• UPC Decayed Bridges(并查集+思维)


    知足且坚定 温柔且上进

    Decayed Bridges

    题目描述
    There are N islands and M bridges.
    The i-th bridge connects the Ai-th and Bi-th islands bidirectionally.
    Initially, we can travel between any two islands using some of these bridges.
    However, the results of a survey show that these bridges will all collapse because of aging, in the order from the first bridge to the M-th bridge.
    Let the inconvenience be the number of pairs of islands (a,b) (a<b) such that we are no longer able to travel between the a-th and b-th islands using some of the bridges remaining.
    For each i (1≤i≤M), find the inconvenience just after the i-th bridge collapses.

    Constraints
    All values in input are integers.
    ·2≤N≤105
    ·1≤M≤105
    ·1≤Ai<Bi≤N
    ·All pairs (Ai,Bi) are distinct.
    ·The inconvenience is initially 0.

    输入
    Input is given from Standard Input in the following format:
    N M
    A1 B1
    A2 B2

    AM BM

    输出
    In the order i=1,2,…,M, print the inconvenience just after the i-th bridge collapses. Note that the answer may not fit into a 32-bit integer type.
    样例输入 Copy
    4 5
    1 2
    3 4
    1 3
    2 3
    1 4
    样例输出 Copy
    0
    0
    4
    5
    6
    提示
    For example, when the first to third bridges have collapsed, the inconvenience is 4 since we can no longer travel between the pairs (1,2),(1,3),(2,4) and (3,4).

    题意: 起初给你一张无向图,然后按照给定的顺序删边,问每删一次边会造成多少损失(损失即不联通的两个点)
    思路: 正着写是不好写的,我们不妨反过来考虑。假设一开始所有点都是孤立的,我把删边看成是添边,倒着加边,然后用并查集维护一下联通块的个数,就很轻松推出来了。
    最开始所有点都是孤立的,损失的总数为n*(n-1)/2。因为首先从n个点里选1个点,有n种选法,再从剩下的n-1个点里选1个点,有n-1种选法,根据乘法原理,是n*(n-1).那么又因为(a,b)和(b,a)是一样的,所以要/2以去重。
    我们每加一条边,都更新一下损失和各联通块内点的数量,每次损失增加的量即是cnt[x]*cnt[y]原理跟上面类似的~
    不会并查集维护联通块的先看这个题~837. 连通块中点的数量 - AcWing题库
    837代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 10;
    //cnt[]表示祖宗节点所在集合中点的个数
    int root[N],cnt[N];
    int ffind(int x){
        return root[x] == x ? x : root[x] = ffind(root[x]);
    }
    void uunion(int a,int b){
        int x = ffind(a),y = ffind(b);
        if(x != y){
           cnt[y] += cnt[x];
            root[x] = y;  
        }
       
    }
    int main(){
        int n,m;
        cin>>n>>m;
        for(int i = 1; i <= n; i++) root[i] = i, cnt[i] = 1;
        while(m--){
            char oper[2];
            int x,y;
            scanf("%s",oper);
            if(oper[0] == 'C'){
                cin>>x>>y;
                uunion(x,y);
            }
            else if(oper[1] == '1'){
                cin>>x>>y;
                if(ffind(x) == ffind(y)) cout<<"Yes"<<endl;
                else cout<<"No"<<endl;
            }
            else{
                cin>>x;
                cout<<cnt[ffind(x)]<<endl;
            }
        }
        return 0;
    }
    
    

    本题代码:

    #pragma GCC optimize(2)
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define I_int ll
    inline ll read()
    {
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    char F[200];
    inline void out(I_int x) {
        if (x == 0) return (void) (putchar('0'));
        I_int tmp = x > 0 ? x : -x;
        if (x < 0) putchar('-');
        int cnt = 0;
        while (tmp > 0) {
            F[cnt++] = tmp % 10 + '0';
            tmp /= 10;
        }
        while (cnt > 0) putchar(F[--cnt]);
        //cout<<" ";
    }
    const int maxn=1e6+7;
    ll n,m;
    ll a[maxn],b[maxn];
    ll root[maxn],cnt[maxn],tot[maxn];
    ll res,ans=0;
    ll Find(ll x){
        if(x==root[x]) return root[x];
        else return root[x]=Find(root[x]);
    }
    void Union(ll a,ll b){
        ll x=Find(a),y=Find(b);
        if(x!=y){
            ans+=cnt[x]*cnt[y];
            cnt[x]+=cnt[y];
            root[y]=x;
        }
    }
    void init(){
        for(ll i=1;i<=n;i++) root[i]=i,cnt[i]=1;///并查集
    }
    void AC(){
       n=read();m=read();
       for(ll i=1;i<=m;i++){
            a[i]=read();
            b[i]=read();
       }
       init();
       res=n*(n-1)/2;
       for(ll i=m;i;i--){
            tot[i]=res-ans;
            Union(a[i],b[i]);
            //cout<<i<<" "<<ans<<endl;
       }
       for(ll i=1;i<=m;i++) printf("%lld
    ",tot[i]);
    }
    int main(){
        AC();
        return 0;
    }
    

    这个题的逆向思维还是很好的~

  • 相关阅读:
    标准粒子群算法(PSO)
    Java开发中的23种设计模式详解
    分布式事务
    sjk 分页
    有用吗2
    有用吗1
    存储过程
    在虚拟机Linux安装Redis
    ajax调用WebAPI添加数据
    SVN安装和使用(简单版)
  • 原文地址:https://www.cnblogs.com/OvOq/p/14853197.html
Copyright © 2020-2023  润新知