懒得复制,戳我戳我
Solution:
- 这个题面出的很毒瘤,读懂了其实是个板子题qwq
- 题面意思:有个(0)至(N-1)的数列是由另一个数列通过加减得到的,相当于将(A_i)变成(i),每一步的代价计算就是(min(A_i-i,N-(A_i-i))),并且(A_ileft(0<=i<N
ight))互不相同,读入代价,要求字典序最小的满足要求的数列
- 我们设读入的为(w[i])
- 思路其实很简单,(i)只可能是由(i-w[i]) 或者 (i+w[i]) 或者 (i+N-w[i]) 或者 (i-N+w[i]),然后我们把符合范围(0)至(N-1)的对应点从大到小建图,这样可以保证搜的时候是从小的点开始
- 然后就从(N-1)到(0)进行二分图匹配,如果无法匹配就输出(No Answer),这样从后到前匈牙利算法去做,保证越前面的匹配的数是最小的。
- 因为(be[i])中存的是(i)数字对应变成的数字是什么,所以反过来存一下输出就好啦
主要是想字典序最小的地方有点emmm神奇,其他的地方还是比较显然的
Code:
//It is coded by Ning_Mew on 3.17
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+7;
bool vis[maxn];
int n,w[maxn],be[maxn],ans[maxn];
int head[maxn],cnt=0;
struct Edge{
int nxt,to;
}edge[maxn*4];
priority_queue<int>q;
void add(int from,int to){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
bool find(int k){
for(int i=head[k];i!=0;i=edge[i].nxt){
int v=edge[i].to;
if(!vis[v]){
vis[v]=true;
if(be[v]==-1||find(be[v])){be[v]=k;return true;}
}
}return false;
}
int main(){
scanf("%d",&n);
while(!q.empty())q.pop();
for(int i=0;i<n;i++){
scanf("%d",&w[i]);
q.push(i-w[i]); q.push(i+w[i]);
q.push(i+n-w[i]);q.push(i-n+w[i]);
while(!q.empty()){
int box=q.top();q.pop();
//cout<<box<<endl;
if(box>=0&&box<n)add(i,box);//cout<<i<<' '<<box<<endl;
}
}
memset(be,-1,sizeof(be));
for(int i=n-1;i>=0;i--){
memset(vis,false,sizeof(vis));
if(find(i));
else{printf("No Answer
");return 0;}
}
for(int i=0;i<n;i++)ans[be[i]]=i;
for(int i=0;i<n;i++)printf("%d ",ans[i]);printf("
");
return 0;
}