• [HNOI 2011]数矩形


    Description

    题库链接

    给出平面上 (n) 个点,选出四个点作为矩形顶点。求出矩形最大面积。

    (1leq nleq 1500)

    Solution

    转载自 Z-Y-Y-S dark♂菜鸡

    两条线段能作于矩形的对角线有 (2) 个条件:

    1. 中点相同
    2. 长度相同

    于是 (O(n^2)) 处理出所有直线,排序,找到满足条件的区间,枚举得出答案。

    复杂度有点玄学。

    Code

    //It is made by Awson on 2018.3.13
    #include <bits/stdc++.h>
    #define LL long long
    #define dob complex<double>
    #define Abs(a) ((a) < 0 ? (-(a)) : (a))
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
    #define writeln(x) (write(x), putchar('
    '))
    #define lowbit(x) ((x)&(-(x)))
    using namespace std;
    const int N = 1500;
    void read(int &x) {
        char ch; bool flag = 0;
        for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
        for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
        x *= 1-2*flag;
    }
    void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
    void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
    
    int n, tot, x[N+5], y[N+5]; LL ans;
    struct tt {
        int idx, idy; LL x, y, l;
        tt(int _idx = 0, int _idy = 0, LL _x = 0, LL _y = 0, LL _l = 0) {
        idx = _idx, idy = _idy, x = _x, y = _y, l = _l;
        }
        bool operator < (const tt &b) const {
        if (x != b.x) return x < b.x;
        if (y != b.y) return y < b.y;
        return l < b.l;
        }
    }a[N*N];
    
    LL dist(int a, int b) {return 1ll*(y[a]-y[b])*(y[a]-y[b])+1ll*(x[a]-x[b])*(x[a]-x[b]); }
    LL square(int a, int b, int c) {return Abs(1ll*(y[b]-y[a])*(x[c]-x[a])-1ll*(y[c]-y[a])*(x[b]-x[a])); }
    void work() {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d%d", &x[i], &y[i]);
        for (int i = 1; i <= n; i++)
        for (int j = i+1; j <= n; j++)
            a[++tot] = tt(i, j, x[i]+x[j], y[i]+y[j], dist(i, j));
        sort(a+1, a+tot+1);
        for (int i = 1, last; i < tot; i = last+1) {
        last = i;
        while (a[i].x == a[last+1].x && a[i].y == a[last+1].y && a[i].l == a[last+1].l && last < tot) ++last;
        for (int j = i; j <= last; j++)
            for (int k = j+1; k <= last; k++)
            ans = max(ans, square(a[j].idx, a[j].idy, a[k].idx));
        }
        writeln(ans);
    }
    int main() {
        work(); return 0;
    }
  • 相关阅读:
    困扰我的c++语法
    C++ primer第三章作业
    渔夫捕鱼问题
    JAVA输入输出
    Python学习5——抽象,涉及抽象和结构、函数的自定义、参数、作用域、递归
    牛顿迭代法计算平方根
    Python学习4——条件、循环及其他语句总结
    Python补充1——Python的简单推导
    Python补充2——Python单行注释、整段注释使用方法
    Python补充3——Python中的 split() 函数
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8561000.html
Copyright © 2020-2023  润新知