题目大意:给定一个有重边,边有权值的无向图。从某一个点出发,求到达所有的点需要的最少费用,并且限制两点之间只有一条路径。费用的计算公式为:所有边的费用之和。而边$x->y$的费用就为:$y$到初始点的之间点的个数(包括起始点) $ imes$ 边权。
题解:状压$DP$,令$f_{i,j}$表示当前深度为$i$,状态为$j$的最小花费
$$f_{i,s}=f_{i-1,t}+g_{s,t} imes(i−1)$$
再开一个数组$c_{s,i}表示状态$s$挖到点$i$的最小花费(不考虑深度)
用边权更新$c$数组,再用$c$数组更新$g$数组即可
卡点:1.$c$数组第二维开太小
C++ Code:
#include <cstdio> #include <cstring> #define lb(x) (x & -x) #define maxn 13 using namespace std; const int inf = 0x3f3f3f3f; int n, m, U, ans = inf; int e[maxn][maxn], c[maxn][1 << maxn | 3]; int g[1 << maxn | 3][1 << maxn | 3], f[maxn][1 << maxn | 3]; inline void getmin(int &a, int b) {if (a > b) a = b;} inline int min(int a, int b) {return a < b ? a : b;} int main() { scanf("%d%d", &n, &m); U = 1 << n; if (n == 1) { puts("0"); return 0; } memset(e, 0x3f, sizeof e); for (int i = 0; i < m; i++) { int a, b, c; scanf("%d%d%d", &a, &b, &c); e[a][b] = e[b][a] = min(c, e[a][b]); } for (int i = 1; i <= n; i++) { for (int j = 1; j < U; j++) { c[i][j] = inf; if (!(j & (1 << i - 1))) { for (int k = 1; k <= n; k++) { if (j & (1 << k - 1)) getmin(c[i][j], e[i][k]); } } } } for (int i = 1; i < U; i++) { for (int j = i & i - 1; j; j = i & j - 1) { int tmp = i ^ j; for (int k = 1; k <= n; k++) { if (tmp & (1 << k - 1)) { g[i][j] += c[k][j]; if (g[i][j] > inf) g[i][j] = inf; } } } } memset(f, 0x3f, sizeof f); for (int i = 1; i <= n; i++) f[1][1 << i - 1] = 0; for (int i = 2; i <= n; i++) { for (int j = 1; j < U; j++) { for (int k = j & j - 1; k; k = j & k - 1) { int tmp = inf; if (g[j][k] ^ inf) tmp = g[j][k] * (i - 1); if (f[i - 1][k] ^ inf) getmin(f[i][j], f[i - 1][k] + tmp); } } getmin(ans, f[i][U - 1]); } printf("%d ", ans); return 0; }