题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问
题解:$2-SAT$,感觉是板子题呀,最后判断一下每一个点选与不选是否在同一个强连通分量内即可
卡点:无
C++ Code:
#include <algorithm> #include <cstdio> #include <iostream> #define maxn 210 #define maxm 2010 int head[maxn], cnt; struct Edge { int to, nxt; } e[maxm]; inline void addedge(int a, int b) { e[++cnt] = (Edge) { b, head[a] }; head[a] = cnt; } int Tim, n, m, nn; inline int getpos(int a, int b) { return a * n + b; } inline void addedge(bool a, int b, bool c, int d) { addedge(getpos(!a, b), getpos(c, d)); addedge(getpos(!c, d), getpos(a, b)); } int DFN[maxn], low[maxn], idx; int S[maxn], top, bel[maxn], scc; bool inS[maxn]; void tarjan(int u) { DFN[u] = low[u] = ++idx; inS[S[++top] = u] = true; int v; for (int i = head[u]; i; i = e[i].nxt) { v = e[i].to; if (!DFN[v]) { tarjan(v); low[u] = std::min(low[u], low[v]); } else if (inS[v]) low[u] = std::min(low[u], DFN[v]); } if (DFN[u] == low[u]) { ++scc; do { inS[v = S[top--]] = false; bel[v] = scc; } while (v != u); } } int main() { std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); std::cin >> Tim; while (Tim --> 0) { std::cin >> n >> m; nn = n << 1; for (int i = 0; i < m; ++i) { static int b, d; static char a, c; std::cin >> a >> b >> c >> d; // std::cout << a << b << ' ' << c << d << std::endl; addedge(a == 'h', b, c == 'h', d); } for (int i = 1; i <= nn; ++i) if (!DFN[i]) tarjan(i); bool solution = true; for (int i = 1; i <= n; ++i) if (bel[i] == bel[i + n]) { solution = false; break; } // for (int i = 1; i <= n; ++i) printf("%d: %d %d ", i, bel[i], bel[n + i]); std::cout << (solution ? "GOOD" : "BAD") << ' '; if (Tim) { __builtin_memset(head, 0, sizeof head), cnt = 0; __builtin_memset(DFN, 0, sizeof DFN), idx = 0; scc = 0; } } return 0; }