• Project Euler 363 Bézier Curves(几何+二分)


    题目链接:

    https://projecteuler.net/problem=363

    题目:

    A cubic Bézier curve is defined by four points: (P_0, P_1, P_2) and (P_3).

    pe363

    The curve is constructed as follows:

    On the segments (P_0P_1), (P_1P_2) and (P_2P_3) the points (Q_0,Q_1) and (Q_2) are drawn such that

    (P_0Q_0 / P_0P_1 = P_1Q_1 / P_1P_2 = P_2Q_2 / P_2P_3 = t (t in [0,1]).)

    On the segments (Q_0Q_1) and (Q_1Q_2) the points (R_0) and (R_1) are drawn such that

    (Q_0R_0 / Q_0Q_1 = Q_1R_1 / Q_1Q_2 = t) for the same value of (t).

    On the segment (R_0R_1) the point B is drawn such that (R_0B / R_0R1 = t) for the same value of (t).

    The Bézier curve defined by the points (P_0, P_1, P_2, P_3) is the locus of B as (Q_0) takes all possible positions on the segment (P_0P_1).

    (Please note that for all points the value of t is the same.)

    At this (external) web address you will find an applet that allows you to drag the points (P_0, P_1, P_2 and P_3) to see what the Bézier curve (green curve) defined by those points looks like. You can also drag the point (Q_0) along the segment (P_0P_1).

    From the construction it is clear that the Bézier curve will be tangent to the segments (P_0P_1) in (P_0) and (P_2P_3) in (P_3).

    A cubic Bézier curve with $P_0=(1,0), P_1=(1,v), P_2=(v,1) and P_3=(0,1) $is used to approximate a quarter circle.

    The value v > 0 is chosen such that the area enclosed by the lines (OP_0, OP_3) and the curve is equal to π/4 (the area of the quarter circle).

    By how many percent does the length of the curve differ from the length of the quarter circle?

    That is, if L is the length of the curve, calculate 100 × (L − π/2)/(π/2)

    Give your answer rounded to 10 digits behind the decimal point.

    题解:

    这道题超级有意思。

    不查一下wiki根本不知道怎么下手...

    https://en.wikipedia.org/wiki/Bézier_curve

    因为Bézier curve上的4个点是:((1, 0), (1, v), (v, 1), (0, 1))

    所以从wiki上得Specific cases可以知道,将4个点代入 (B(t)) 得到 (x(t))(y(t))

    + - (B(t) = (1-t)^3 P_0 + 3(1-t)^2 t P_1 + 3(1-t) t^2 P_2 + t^3 P_3)

    + - (x(t) = (1 - t)^3 + 3(1-t)^2t + 3(1-t) t^2 v)

    + - (y(t) = 3(1-t)^2tv + 3(1-t) t^2 + t^3)

    其中,(v) 未知,(0 <= t <= 1). (x(t), y(t)) 就是计算曲线上的坐标。

    然后我们直接二分 (v) 就可以了。

    得到 (v) 后可以直接计算曲线的长度(arc_length_of_a_curve),也可以将曲线化为无数的小线段进行逼近。

    代码:

    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 1e8;
    const int mod = 1e9;
    const double pi = acos(-1.0);
    
    double x(double t, double v)
    {
        return (1-t)*(1-t)*(1-t) + 3*(1-t)*(1-t)*t + 3*(1-t)*t*t*v;
    }
    
    double y(double t, double v)
    {
        return 3*t*(1-t)*(1-t)*v + t*t*t + 3*t*t*(1-t);
    }
    
    double cal_distance(double a,double b,double c,double d)
    {
      return (double)sqrt((a-c)*(a-c)+(b-d)*(b-d));
    }
    
    //https://en.wikipedia.org/wiki/B%C3%A9zier_curve
    int main(int argc, char const *argv[]) {
    
      int dot =  500000;
      double left = 0.0, right = 1.0;
      double v = 0.0, area = 0.0;
      while (right - left > 1e-15) {
         v = (right + left) / 2;
         area = 0.0;
        for(int i = 0;i < dot;i++) {
          double now = (double) i / dot * 1.0;
          double next = (double) (i+1) / dot * 1.0;
          //cross product
          area += ( x(now,v) * y(next,v) - x(next,v) * y(now,v) ) / 2.0;
        }
        if(area > pi / 4.0) {
          right = v;
        }
        else {
          left = v;
        }
      }
    
      std::cout << "binary search finish !" << '
    ';
      std::cout << "left = " << left << '
    ';
      std::cout << "v = " << v << '
    ';
      std::cout << "area = " << area << '
    ';
    
      double L = 0.0;
      dot = 500000;
      for(int i = 0;i < dot;i++){
        double now = (double)i / dot * 1.0;
        double next = (double)(i + 1) / dot * 1.0;
        L += cal_distance(x(now, v), y(now, v), x(next, v), y(next, v));
      }
      printf("%.12f
    ",100.0*(L-pi/2.0)/pi*2.0);
      cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.
    ";
      return 0;
    }
    
    
  • 相关阅读:
    二、云计算openstack共享组件--时间同步服务ntp
    一、云计算openstack介绍
    五、Kvm虚拟机迁移
    四、Kvm虚拟化网络管理
    三、Kvm虚拟化存储管理
    二、kvm虚拟机管理
    一、kvm虚拟化介绍
    九、Linux网络技术管理及进程管理
    园主的码云网站,可以在里面查看园主的练习代码哦
    万能Makefile,前戏做足项目做起来才顺畅。
  • 原文地址:https://www.cnblogs.com/LzyRapx/p/8318669.html
Copyright © 2020-2023  润新知