• CF766E Mahmoud and a xor trip


    首先按照套路,我们按位考虑,那么就变成统计 (0)(1) 两种情况的组合的数目,最后乘2的某次幂。

    那么记 (dp_{i,j,0/1}) 表示经过以 (i) 为根的子树的每一个节点,在第 (j) 位上产生了多少个 (0)(1),然后 dfs 一遍,用儿子的答案更新父亲的答案,最后累加就好了。注意要考虑长度为 (0) 的路径。

    #include <bits/stdc++.h>
    #define reg register
    #define ll long long
    #define int long long
    #define ull unsigned long long
    #define db double
    #define pi pair<int, int>
    #define pl pair<ll, ll>
    #define vi vector<int>
    #define vl vector<ll>
    #define vpi vector<pi>
    #define vpl vector<pl>
    #define pb push_back
    #define er erase
    #define SZ(x) (int) x.size()
    #define lb lower_bound
    #define ub upper_bound
    #define all(x) x.begin(), x.end()
    #define rall(x) x.rbegin(), x.rend()
    #define mkp make_pair
    #define ms(data_name) memset(data_name, 0, sizeof(data_name))
    #define msn(data_name, num) memset(data_name, num, sizeof(data_name))
    #define For(i, j) for(reg int (i) = 1; (i) <= (j); ++(i))
    #define For0(i, j) for(reg int (i) = 0; (i) < (j); ++(i))
    #define Forx(i, j, k) for(reg int (i) = (j); (i) <= (k); ++(i))
    #define Forstep(i , j, k, st) for(reg int (i) = (j); (i) <= (k); (i) += (st))
    #define fOR(i, j) for(reg int (i) = (j); (i) >= 1; (i)--)
    #define fOR0(i, j) for(reg int (i) = (j) - 1; (i) >= 0; (i)--)
    #define fORx(i, j, k) for(reg int (i) = (k); (i) >= (j); (i)--)
    #define tour(i, u) for(reg int (i) = head[(u)]; (i) != -1; (i) = nxt[(i)])
    using namespace std;
    char ch, B[1 << 20], *S = B, *T = B;
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 20, stdin), S == T) ? 0 : *S++)
    #define isd(c) (c >= '0' && c <= '9')
    int rdint() {
      int aa, bb;
      while(ch = getc(), !isd(ch) && ch != '-');
      ch == '-' ? aa = bb = 0 : (aa = ch - '0', bb = 1);
      while(ch = getc(), isd(ch))
        aa = aa * 10 + ch - '0';
      return bb ? aa : -aa;
    }
    ll rdll() {
      ll aa, bb;
      while(ch = getc(), !isd(ch) && ch != '-');
      ch == '-' ? aa = bb = 0 : (aa = ch - '0', bb = 1);
      while(ch = getc(), isd(ch))
        aa = aa * 10 + ch - '0';
      return bb ? aa : -aa;
    }
    const int mod = 998244353;
    // const int mod = 1e9 + 7;
    struct mod_t {
      static int norm(int x) {
        return x + (x >> 31 & mod);
      }
      int x;
      mod_t() {  }
      mod_t(int v) : x(v) {  }
      // mod_t(ll v) : x(v) {  }
      mod_t(char v) : x(v) {  }
      mod_t operator +(const mod_t &rhs) const {
        return norm(x + rhs.x - mod);
      }
      mod_t operator -(const mod_t &rhs) const {
        return norm(x - rhs.x);
      }
      mod_t operator *(const mod_t &rhs) const {
        return (ll) x * rhs.x % mod;
      }
    };
    const int MAXN = 2e5 + 10;
    int n, a[MAXN], dp[MAXN][20][2];
    ll ans = 0;
    int E, head[MAXN], nxt[MAXN << 1], pnt[MAXN << 1];
    inline void clear() {
      E = 0;
      msn(head, -1);
    }
    inline void addedge(int x, int y) {
      nxt[E] = head[x];
      pnt[E] = y;
      head[x] = E++;
    }
    inline void dfs(int u, int f) {
      For0(i, 20)
        if(a[u] & (1 << i))
          dp[u][i][1] = 1;
        else
          dp[u][i][0] = 1;
      tour(i, u) {
        int v = pnt[i];
        if(v != f) {
          dfs(v, u);
          For0(j, 20) {
            int tmp = (a[u] >> j) & 1;
            ans += (dp[u][j][1] * dp[v][j][0] + dp[u][j][0] * dp[v][j][1]) << j;
            dp[u][j][tmp ^ 0] += dp[v][j][0];
            dp[u][j][tmp ^ 1] += dp[v][j][1];
          }
        }
      }
    }
    inline void work() {
      n = rdint();
      For(i, n) {
        a[i] = rdint();
        ans += a[i];
      }
      clear();
      Forx(i, 2, n) {
        int u = rdint(), v = rdint();
        addedge(u, v);
        addedge(v, u);
      }
      dfs(1, -1);
      printf("%lld
    ", ans);
    }
    signed main() {
      // freopen("input.txt", "r", stdin);
      work();
      return 0;
    }
    
  • 相关阅读:
    梯度下降法-4.向量化和数据标准化
    梯度下降法-3.实现线性回归中的梯度下降法
    梯度下降法-2.线性回归中的梯度下降法
    梯度下降法-1.原理及简单实现
    线性回归算法-5.更多思考
    TCP/IP协议
    TFTP 服务器
    python3 系统编程进程
    python3 私有化 属性property
    python3 面向对象
  • 原文地址:https://www.cnblogs.com/Lonely-233/p/13659199.html
Copyright © 2020-2023  润新知