• codeforces1267G


    考虑我们在某个时刻,剩下的数有 $ i $ 个,这些数的和为 $ j $,那么我们期望要抽 $ n over i $ 次才能取到一个新的物品,这个物品的期望权值为 $ j over i $,我们花了 $ ({n over i} - 1) * ({x over 2}) $ 的价格买到了一个 $ j over i $ 的物品,如果前者小于后者,选择抽物品更优。可以用背包求出每个状态的概率

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #include <bits/stdc++.h>
    #define Fast_cin ios::sync_with_stdio(false), cin.tie(0);
    #define rep(i, a, b) for(register int i = a; i <= b; i++)
    #define per(i, a, b) for(register int i = a; i >= b; i--)
    using namespace std;
    
    typedef unsigned long long ull;
    typedef pair <int, int> pii;
    typedef long long ll;
    
    template <typename _T>
    inline void read(_T &f) {
        f = 0; _T fu = 1; char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
        f *= fu;
    }
    
    template <typename T>
    void print(T x) {
        if(x < 0) putchar('-'), x = -x;
        if(x < 10) putchar(x + 48);
        else print(x / 10), putchar(x % 10 + 48);
    }
    
    template <typename T>
    void print(T x, char t) {
        print(x); putchar(t);
    }
    
    const int N = 105;
    
    double f[N][N * N], c[N][N], ans;
    int a[N];
    int n, x, sum;
    
    int main() {
        read(n); read(x);
        f[0][0] = c[0][0] = 1;
        for(register int i = 1; i <= n; i++) {
            c[i][0] = 1;
            for(register int j = 1; j <= i; j++) {
                c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
            }
        }
        for(register int i = 1; i <= n; i++) {
            read(a[i]);
            for(register int j = i - 1; j >= 0; j--) {
                for(register int k = sum; k >= 0; k--) {
                    f[j + 1][k + a[i]] += f[j][k];
                }
            }
            sum += a[i];
        }
        ans = sum;
        for(register int i = 1; i <= n; i++) {
            for(register int j = 0; j <= sum; j++) {
                double val = ((double)n / i - 1) * x / 2 + x, p = (double)j / i;
                if(val <= p) ans -= (p - val) / c[n][i] * f[i][j];
            }
        }
        printf("%.9lf
    ", ans);
        return 0;
    }
    
  • 相关阅读:
    Cocos Creator之生命周期函数
    Cocos Creator之基本概念
    Cocos Creator之菜单栏和工具栏
    Cocos Creator之认识
    lvs nat模式+iptables实现fullnat
    k8s cpu绑定
    arp代理
    确定veth pair在容器和宿主机的对应关系
    k8s 滚动发布
    http长连接
  • 原文地址:https://www.cnblogs.com/LJC00118/p/12022473.html
Copyright © 2020-2023  润新知