一、前述
提升是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中;如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradient boosting)提升技术的意义:如果一个问题存在弱预测模型,那么可以通过提升技术的办法得到一个强预测模型。
二、算法过程
给定输入向量X和输出变量Y组成的若干训练样本(X 1 ,Y 1 ),(X 2 ,Y 2 )......(X n ,Y n ),
目标是找到近似函数F(X),使得损失函数L(Y,F(X))的损失值最小。
L损失函数一般采用最小二乘损失函数或者绝对值损失函数
最优解为:
假定F(X)是一族最优基函数f i (X)的加权和:
以贪心算法的思想扩展得到Fm(X),求解最优f
以贪心法在每次选择最优基函数f时仍然困难,使用梯度下降的方法近似计算
给定常数函数F 0 (X)
计算残差
使用数据 计算拟合残差的基函数
计算步长
更新模型(梯度的思想)
三、GDBT算法思想
GBDT由三部分构成:DT(Regression Decistion Tree)、GB(Gradient Boosting)和Shrinkage,由多棵决策树组成,所有树的结果累加起来就是最终结果
迭代决策树和随机森林的区别:
随机森林使用抽取不同的样本构建不同的子树,也就是说第m棵树的构建和前m-1棵树的结果是没有关系的
迭代决策树在构建子树的时候,使用之前子树构建结果后形成的残差作为输入数据构建下一个子树;然后最终预测的时候按照子树构建的顺序进行预测,并将预测结果相加