嘿嘿,第一个AC ...
用邻接矩阵存储有向图,实现最短路径Dijkstra算法,图中边的权值为整型,顶点个数少于10个。
部分代码提示:
#include <iostream> #include <string> using namespace std; const int MaxSize = 10; const int INF = 32767; class MGraph { public: MGraph(char a[], int n, int e); void Dijkstra(); private: char vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; MGraph::MGraph(char a[], int n, int e) { //write your code. } int Min(int dist[], int vertexNum) { //write your code. } void MGraph::Dijkstra() { //write your code. } int main() { int n = 0; int e = 0; cin >> n >> e; char p[MaxSize]; int i = 0; for (i=0; i<n; i++) { cin >> p[i]; } MGraph MG(p, n, e); MG.Dijkstra(); return 0; }
输入描述
首先输入图中顶点个数和边的条数; 再输入顶点的信息(字符型); 再输入各边及其权值。输出描述
依次输出从编号为0的顶点开始的从小到大的所有最短路径,每条路径及其长度占一行。输入样例
5 7 A B C D E 0 1 6 0 2 2 0 3 1 1 2 4 1 3 3 2 4 6 3 4 7输出样例
AD 1 AC 2 AB 6 ADE 8
此题除了考验朴素版dijkstra, 还需要路径排序,溯源..
溯源利用递归,以及pre数组(和并查集相似)
各种路径排序,可以用结构体或者vector来存储路径以及长度
注意:本校OJ请自行删除所有换行
#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
vector<PII> v;
const int MaxSize = 10;
const int INF = 0x3f3f3f3f;
int st[MaxSize];
class MGraph
{
public:
int dist[MaxSize];
MGraph(char a[], int n, int e);
void Dijkstra(int goal);
void showLenthRank();
void shortMinPath(int pre[], int u);
private:
char vertex[MaxSize];
int arc[MaxSize][MaxSize];
int vertexNum, arcNum;
};
MGraph::MGraph(char a[], int n, int e)
{
vertexNum = n, arcNum = e;
memset(dist, 0x3f, sizeof dist);
memset(arc, 0x3f, sizeof arc);
for(int i = 0; i < vertexNum; i++){
vertex[i] = a[i];
}
int x,y,w;
for(int i = 0; i < arcNum; i++)
{
cin >> x >> y >> w;
arc[x][y] = w;
}
}
void MGraph::Dijkstra(int goal)
{
memset(dist, 0x3f, sizeof dist);
dist[0] = 0;
for(int i = 0; i < vertexNum; i++)
{
int t = -1;
for(int j = 0; j < vertexNum; j++)
if(!st[j] && (t==-1 || dist[j]<dist[t]))
t = j;
st[t] = 1;
for(int j = 0; j < vertexNum; j++)
dist[j] = min(dist[j], dist[t]+arc[t][j]);
}
for (int i=1; i<vertexNum; i++)
{
v.push_back({dist[i],i});
}
sort(v.begin(), v.end());
// for(int i = 0; i < v.size(); i++){
// cout << v[i].first << ' ' << v[i].second << endl;
// }
}
void MGraph::showLenthRank()
{
for(int k = 0; k < v.size(); k++)
{
int pre[MaxSize];
memset(st, 0, sizeof st);
memset(dist, 0x3f, sizeof dist);
dist[0] = 0;
for(int i = 0; i < vertexNum; i++)
{
int t = -1;
for(int j = 0; j < vertexNum; j++)
if(!st[j] && (t==-1 || dist[j]<dist[t]))
t = j;
st[t] = 1;
//cout << vertex[t];
if(t == v[k].second){//小优化
break;
}
for(int j = 0; j < vertexNum; j++)
{
if(!st[j] &&dist[t]+arc[t][j] < dist[j]){
dist[j] = dist[t]+arc[t][j];
pre[j] = t;
}
}
}
shortMinPath(pre,v[k].second);
cout << ' '<< v[k].first << endl;
}
}
void MGraph::shortMinPath(int pre[], int u)
{
if(u == 0){
cout << vertex[0];
return ;
}
shortMinPath(pre, pre[u]);
cout << vertex[u];
}
int main()
{
int n = 0;
int e = 0;
cin >> n >> e;
char p[MaxSize];
int i = 0;
for (i=0; i<n; i++)
{
cin >> p[i];
}
MGraph MG(p, n, e);
MG.Dijkstra(n-1);
MG.showLenthRank();
return 0;
}