题面
解析
这道题集齐了大部分Splay的经典操作,上课时wys老师讲了一下,这个题还是很值得一做的
基操:
Splay上的所有区间操作都需要提取区间,如果要提取一个[l, r]的区间,只需要把l-1的点转到根,再把r+1的点转到根的右儿子,那么根的右儿子的左儿子的整颗子树就是我们要提取的区间
操作1:插入
这个题的插入并非插入一个数,而是插入一个数列,一个一个的插入肯定会T的,所以就把插入的数列先建成一棵树,再提取区间,这时根的右儿子的左儿子为空,只需要把新树的根挂在根的右儿子的左儿子上,最后更新信息即可
操作2:删除
还是先提取区间,断开根的右儿子与它的左儿子相连的边就行,但这道题的空间有限,需要回收节点编号,最好开个栈来存编号,用队列的话有点浪费空间,而且必须开很大的数组才能在CodeVS上AC,在洛谷上好像区别不大,当然我说的队列是手写队列,你用STL我也没话说
操作3:修改
同样是先提取区间,把根的右儿子的左儿子修改后打上标记即可
操作4:翻转
提取区间,把根的右儿子的左儿子修改后打上标记
操作5:求和
提取区间,输出
操作6:求和最大的子序列的和
终于不用提取区间了,直接输出就行。但维护信息的时候很麻烦,与线段树求和最大的子列类似,我们需要维护区间的子序列最大值,以及左右区间的最大子序列的和,在向上更新的时候,需要像下面这样操作, 其中ls是x的左儿子,rs是右儿子,mx是和最大子序列的和,lx是左区间最大子序列的和,rx是右区间最大子序列的和
细节:
0号节点的mx要赋负无穷,因为有些点没有左儿子或右儿子,避免更新答案时出错(大导演wys这个细节调了1个小时)
标记下传的时候要注意有没有左儿子或右儿子,不然会改变0号节点的信息,我搞了半个小时
伸展操作(splay)不要写挂了,我搞了1个小时
代码:
#include<bits/stdc++.h> using namespace std; const int maxn = 500005, inf = 0x3f3f3f3f; template<class T> void read(T &re) { re=0; T sign=1; char tmp; while((tmp=getchar())&&(tmp<'0'||tmp>'9')) if(tmp=='-') sign=-1; re=tmp-'0'; while((tmp=getchar())&&(tmp>='0'&&tmp<='9')) re=(re<<3)+(re<<1)+(tmp-'0'); re*=sign; } int n, m, root, id[maxn], tot; int a[maxn]; struct splay_tree{ int s[2], siz, fa, tag; int val, mx, lx, rx, sum, c; void init(int x) { val = sum = mx = x; lx = rx = max(x, 0); siz = 1; c = inf; } void Clear() { s[0] = s[1] = siz = fa = tag = 0; val = lx = rx = sum = mx = 0; c = inf; } }tr[maxn]; int stak[maxn], top; void update(int x) { int ls = tr[x].s[0], rs = tr[x].s[1]; tr[x].sum = tr[ls].sum + tr[rs].sum + tr[x].val; tr[x].siz = tr[ls].siz + tr[rs].siz + 1; tr[x].mx = max(tr[ls].mx, tr[rs].mx); tr[x].mx = max(tr[x].mx, tr[ls].rx + tr[rs].lx + tr[x].val); tr[x].lx = max(tr[ls].lx, tr[ls].sum + tr[x].val + tr[rs].lx); tr[x].rx = max(tr[rs].rx, tr[rs].sum + tr[x].val + tr[ls].rx); } void spread(int x) { int ls = tr[x].s[0], rs = tr[x].s[1]; if(tr[x].c != inf) { if(ls) { tr[ls].val = tr[ls].c = tr[x].c; tr[ls].sum = tr[ls].siz * tr[x].c; tr[ls].lx = tr[ls].rx = max(tr[ls].sum, 0); tr[ls].mx = max(tr[ls].val, tr[ls].sum); } if(rs) { tr[rs].val = tr[rs].c = tr[x].c; tr[rs].sum = tr[rs].siz * tr[x].c; tr[rs].lx = tr[rs].rx = max(tr[rs].sum, 0); tr[rs].mx = max(tr[rs].val, tr[rs].sum); } tr[x].c = inf; tr[x].tag = 0; } if(tr[x].tag) { if(ls) { tr[ls].tag ^= 1; swap(tr[ls].lx, tr[ls].rx); swap(tr[ls].s[0], tr[ls].s[1]); } if(rs) { tr[rs].tag ^= 1; swap(tr[rs].lx, tr[rs].rx); swap(tr[rs].s[0], tr[rs].s[1]); } tr[x].tag = 0; } } void Rotate(int x) { int y = tr[x].fa, z = tr[y].fa, k = (tr[y].s[1] == x), w = (tr[z].s[1] == y), son = tr[x].s[k^1]; tr[y].s[k] = son;tr[son].fa = y; tr[x].s[k^1] = y;tr[y].fa = x; tr[z].s[w] = x;tr[x].fa = z; update(y);update(x); } void Splay(int x, int to) { while(tr[x].fa != to) { int y = tr[x].fa, z = tr[y].fa; if(z == to) { Rotate(x); break; } Rotate((tr[y].s[1] == x) != (tr[z].s[1] == y) ? x: y); Rotate(x); } if(!to) root = x; } int Find(int x) { int now = root; while(1) { spread(now); int ls = tr[now].s[0], rs = tr[now].s[1]; if(x == tr[ls].siz + 1) return now; if(x <= tr[ls].siz) now = ls; else x -= tr[ls].siz + 1, now = rs; } } void build(int l, int r, int f) { int mid = (l + r)>>1, now = id[mid], pre = id[f]; if(l == r) tr[now].init(a[mid]); if(l < mid) build(l, mid - 1, mid); if(mid < r) build(mid + 1, r, mid); tr[now].val = a[mid]; tr[now].fa = pre; tr[now].c = inf; update(now); if(pre) tr[pre].s[mid >= f] = now; } void Insert(int pos, int len) { for( int i = 1; i <= len; ++i) read(a[i]); for( int i = 1; i <= len; ++i) if(top) id[i] = stak[top--]; else id[i] = ++tot; build(1, len, 0); int x = id[(1+len)>>1]; int y = Find(pos + 1), z = Find(pos + 2); Splay(y, 0);Splay(z, y); tr[x].fa = z; tr[z].s[0] = x; update(z);update(y); } void Recycle( int x) { if(!x) return ; int ls = tr[x].s[0], rs = tr[x].s[1]; stak[++top] = x; tr[x].Clear(); if(ls) Recycle(ls); if(rs) Recycle(rs); } void Del(int pos, int len) { int x = Find(pos), y = Find(pos + len + 1); Splay(x, 0);Splay(y, x); Recycle(tr[y].s[0]); tr[y].s[0] = 0; update(y);update(x); } void Change(int pos, int len, int val) { int x = Find(pos), y = Find(pos + len + 1); Splay(x, 0);Splay(y, x); int z = tr[y].s[0]; tr[z].val = tr[z].c = val; tr[z].sum = tr[z].siz * val; tr[z].lx = tr[z].rx = max(tr[z].sum, 0); tr[z].mx = max(tr[z].val, tr[z].sum); update(y);update(x); } void Rever(int pos, int len) { int x = Find(pos), y = Find(pos + len + 1); Splay(x, 0);Splay(y, x); int z = tr[y].s[0]; if(tr[z].c == inf) { tr[z].tag ^= 1; swap(tr[z].lx, tr[z].rx); swap(tr[z].s[0], tr[z].s[1]); update(y);update(x); } } int Query(int pos, int len) { int x = Find(pos), y = Find(pos + len + 1); Splay(x, 0);Splay(y, x); int z = tr[y].s[0]; return tr[z].sum; } int main() { read(n);read(m); tr[0].mx = a[1] = a[n+2] = -inf; for( int i = 1; i <= n; ++i) read(a[i+1]); for( int i = 1; i <= n + 2; ++i) id[i] = i; build(1, n + 2, 0); root = (n + 3)>>1; tot = n + 2; tr[0].s[1] = root; for( int i = 1; i <= m; ++i) { char opt[10]; int pos, len; scanf("%s", opt); if(opt[0] == 'I') { read(pos);read(len); Insert(pos, len); } else if(opt[0] == 'D') { read(pos);read(len); Del(pos, len); } else if(opt[0] == 'M' && opt[2] == 'K') { int val; read(pos);read(len);read(val); Change(pos, len, val); } else if(opt[0] == 'R') { read(pos);read(len); Rever(pos, len); } else if(opt[0] == 'G') { read(pos);read(len); printf("%d ", Query(pos, len)); } else printf("%d ", tr[root].mx); } return 0; }