• Yet Another Multiple Problem HDU 4474 BFS


    Yet Another Multiple Problem

    Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2004    Accepted Submission(s): 482


    Problem Description
    There are tons of problems about integer multiples. Despite the fact that the topic is not original, the content is highly challenging. That’s why we call it “Yet Another Multiple Problem”.
    In this problem, you’re asked to solve the following question: Given a positive integer n and m decimal digits, what is the minimal positive multiple of n whose decimal notation does not contain any of the given digits?
     
    Input
    There are several test cases.
    For each test case, there are two lines. The first line contains two integers n and m (1 ≤ n ≤ 104). The second line contains m decimal digits separated by spaces.
    Input is terminated by EOF.
     
    Output
    For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) while Y is the minimal multiple satisfying the above-mentioned conditions or “-1” (without quotation marks) in case there does not exist such a multiple.
     
    Sample Input
    2345 3 7 8 9 100 1 0
     
    Sample Output
    Case 1: 2345 Case 2: -1
     
    Source
     
    Recommend
    liuyiding
     
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<string>
    #include<map>
    #include<stack>
    #include<set>
    #include<iostream>
    #include<vector>
    #include<queue>
    //ios_base::sync_with_stdio(false);
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    
    using namespace std;
    #define sz(v) ((int)(v).size())
    #define rep(i, a, b) for (int i = (a); i < (b); ++i)
    #define repf(i, a, b) for (int i = (a); i <= (b); ++i)
    #define repd(i, a, b) for (int i = (a); i >= (b); --i)
    #define clr(x) memset(x,0,sizeof(x))
    #define clrs( x , y ) memset(x,y,sizeof(x))
    #define out(x) printf(#x" %d
    ", x)
    #define sqr(x) ((x) * (x))
    typedef long long LL;
    
    const int INF = 1000000000;
    const double eps = 1e-8;
    const int maxn = 30000;
    
    int sgn(const double &x) {  return (x > eps) - (x < -eps); }
    
    int n,m;
    int cant[maxn];
    int vis[maxn];
    struct Node
    {
        int mod;
        int pre;
        int val;
        int id;
    }node[maxn];
    
    void print_ans(int i)
    {
        if(node[i].pre != -1)
            print_ans(node[i].pre);
        //cout<<i<<endl;
        printf("%d",node[i].val);
    }
    void bfs()
    {
        clr(vis);
        queue<Node> q;
        int cnt = 0;
        rep(i,1,10)
        {
            if(!cant[i] && !vis[i%n])
            {
                vis[i%n] = 1;
                node[cnt].mod = i%n;
                node[cnt].pre = -1; 
                node[cnt].val = i;
                node[cnt].id = cnt;
                q.push(node[cnt]);
                cnt++;
            }
        }
        while(!q.empty())
        {
            Node temp = q.front();
            q.pop();
            if(temp.mod == 0)
            {
                print_ans(temp.id);
                return ;
            }
            
            int ret;
            rep(i,0,10)
            {
                if(cant[i])
                    continue;
                ret  = temp.mod*10 + i;
                int a = ret%n;
                if(!vis[a])
                {
                    vis[a] = 1;
                    Node t;
                    t.mod = a;
                    t.val = i;
                    t.pre = temp.id;
                    t.id = cnt;
                    node[cnt] = t;
                    cnt++;
                    q.push(t);
                }
            }
        }
        printf("-1");
    }
    int main() 
    {
        //freopen("in.txt","r",stdin);
        int k = 1;
        while(scanf("%d%d",&n,&m) == 2)
        {
            clr(cant);
            rep(i,0,m)
            {
                int a;
                scanf("%d",&a);
                cant[a] = 1;
            }
            printf("Case %d: ",k++);
            bfs();
            cout<<endl;
        }
        return 0;
    }
  • 相关阅读:
    27数据结构与算法分析之---二叉排序树
    26数据结构与算法分析之---线索二叉树
    25数据结构与算法分析之---树与森林
    24数据结构与算法分析之---二叉树的概念
    23数据结构与算法分析之---树的基本概念
    22数据结构与算法分析之---特殊矩阵
    21数据结构与算法分析之---多维数组
    20数据结构与算法分析之---串的模式匹配
    17数据结构与算法分析之---串的类型
    16数据结构与算法分析之---链式队列
  • 原文地址:https://www.cnblogs.com/DreamHighWithMe/p/3367003.html
Copyright © 2020-2023  润新知