• 魔方阵


    群里的朋友问了这道题,刚开始想到的最笨了:枚举,然后就是判断,要是n过大了就。。。。

    后来参考百度百科给出的分类考虑的方法,尝试了一下,感觉按照方法来一点也不复杂了。。

    不过百度百科也提到了一种通用的方法,没有尝试。

    #include<stdio.h>

    # define MAXN 100

    int a[MAXN][MAXN];

    void swap(int *x, int *y)
    {
    int tmp;
    tmp = *x;
    *x = *y;
    *y = tmp;
    }

    void print_odd(int n)
    {
    int i, j, t;
    i = 1;
    j = (n+1)/2;
    for (t = 1; t <= n*n; ++t)
    {
    a[i][j] = t;
    if (t%n == 0) ++i;
    else
    {
    if ((--i) == 0) i = n;
    if ((++j) == (n+1)) j = 1;
    }
    }
    }

    void print_even4(int n)
    {
    int i, j, p, q, t, tmp, c;
    t = 0;
    for (i = 1; i <= n; ++i)
    for (j = 1; j <= n; ++j)
    a[j][i] = ++t;
    c = n/4;
    for (p = 1; p <= c; ++p)
    for (q = 1; q <= c; ++q)
    {
    i = p*4 - 3;
    j = q*4 - 3;
    swap(&a[i][j], &a[i+3][j+3]);
    swap(&a[i+1][j+1], &a[i+2][j+2]);
    swap(&a[i+3][j], &a[i][j+3]);
    swap(&a[i+2][j+1], &a[i+1][j+2]);
    }
    }

    void print_even2(int n)
    {
    int i, j, c, u, m;
    c = n/2;
    u = c*c;
    print_odd(c);
    for (i = 1; i <= c; ++i)
    for (j = 1; j <= c; ++j)
    {
    a[i+c][j+c] = a[i][j]+u;
    a[i+c][j] = a[i][j]+3*u;
    a[i][j+c] = a[i][j]+2*u;
    }
    m = (c-1)/2;
    for (i = 1; i <= c; ++i)
    for (j = n-m+1; j <= n; ++j)
    {
    swap(&a[i][j], &a[i+c][j]);
    if (i != m+1) swap(&a[i][j-n+m], &a[i+c][j-n+m]);
    else swap(&a[i][j-n+m+m-1], &a[i+c][j-n+m+m-1]);
    }
    }

    int main()
    {
    int i, j, t, n;
    while (~scanf("%d", &n))
    {
    if (n%2 == 1) print_odd(n);
    else if (n%4 == 0) print_even4(n);
    else print_even2(n);
    for (i = 1; i <= n; ++i)
    {
    for (j = 1; j <=n; ++j)
    printf("%4d ", a[i][j]);
    printf("\n");
    }
    }
    return 0;
    }



  • 相关阅读:
    念奴娇·登多景楼
    转载《“精”、“气”、“神”解》
    三伏天,人体内有一个“冰箱”
    《抓住“三伏天”习武健身的黄金季节》--胡俭雷
    孙氏内家拳中的桩功
    清净布气门功夫介绍
    孙式太极拳的站桩功--无极式
    [Android Tips] 25. ADB Command Note
    [Python] 删除指定目录下后缀为 xxx 的过期文件
    [Git] Ubuntu 升级 git 版本
  • 原文地址:https://www.cnblogs.com/JMDWQ/p/2373840.html
Copyright © 2020-2023  润新知