• uvalive 7331 Hovering Hornet 半平面交+概率期望


    题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望。

    思路:半平面交+概率期望

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #include<iostream>
      5 #include<cstdlib>
      6 #include<string>
      7 #include<cmath>
      8 #include<vector>
      9 using namespace std;
     10 const int maxn=1e5+7;
     11 const double eps=1e-8;
     12 const double pi=acos(-1);
     13 
     14 double dcmp(double x)
     15 {
     16     if(fabs(x) < eps) return 0;
     17     else return x < 0 ? -1 : 1;
     18 }
     19 
     20 struct Point
     21 {
     22     double x, y;
     23     Point(double x=0, double y=0):x(x),y(y) { }
     24 };
     25 
     26 typedef Point Vector;
     27 
     28 Vector operator + (const Point& A, const Point& B)
     29 {
     30     return Vector(A.x+B.x, A.y+B.y);
     31 }
     32 
     33 Vector operator - (const Point& A, const Point& B)
     34 {
     35     return Vector(A.x-B.x, A.y-B.y);
     36 }
     37 
     38 Vector operator * (const Point& A, double v)
     39 {
     40     return Vector(A.x*v, A.y*v);
     41 }
     42 
     43 Vector operator / (const Point& A, double v)
     44 {
     45     return Vector(A.x/v, A.y/v);
     46 }
     47 
     48 double Cross(const Vector& A, const Vector& B)
     49 {
     50     return A.x*B.y - A.y*B.x;
     51 }
     52 
     53 double Dot(const Vector& A, const Vector& B)
     54 {
     55     return A.x*B.x + A.y*B.y;
     56 }
     57 
     58 double Length(const Vector& A)
     59 {
     60     return sqrt(Dot(A,A));
     61 }
     62 
     63 Vector Rotate(Vector A,double rad)
     64 {
     65     return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
     66 }
     67 
     68 bool operator < (const Point& p1, const Point& p2)
     69 {
     70     return p1.x < p2.x || (p1.x == p2.x && p1.y < p2.y);
     71 }
     72 
     73 bool operator == (const Point& p1, const Point& p2)
     74 {
     75     return p1.x == p2.x && p1.y == p2.y;
     76 }
     77 
     78 Vector Normal(Vector A)
     79 {
     80     double L=Length(A);
     81     return Vector(-A.y/L,A.x/L);
     82 }
     83 struct Line
     84 {
     85     Point P;
     86     Vector v;
     87     double ang;
     88     Line() {}
     89     Line(Point P, Vector v):P(P),v(v)
     90     {
     91         ang = atan2(v.y, v.x);
     92     }
     93     bool operator < (const Line& L) const
     94     {
     95         return ang < L.ang;
     96     }
     97 };
     98 
     99 bool OnLeft(const Line& L, const Point& p)
    100 {
    101     return Cross(L.v, p-L.P) > 0;
    102 }
    103 
    104 
    105 Point GetLineIntersection(const Line& a, const Line& b)
    106 {
    107     Vector u = a.P-b.P;
    108     double t = Cross(b.v, u) / Cross(a.v, b.v);
    109     return a.P+a.v*t;
    110 }
    111 
    112 const double INF = 1e8;
    113 
    114 Point ansPoly[maxn];
    115 int HalfplaneIntersection(vector<Line> L)     //L为切割平面的直线集合,求半平面交,返回点的个数,点存在anspoly数组中
    116 {
    117     int n = L.size();
    118     sort(L.begin(), L.end()); // 按极角排序
    119     int first, last;         // 双端队列的第一个元素和最后一个元素的下标
    120     vector<Point> p(n);      // p[i]为q[i]和q[i+1]的交点
    121     vector<Line> q(n);       //
    122     q[first=last=0] = L[0];  //
    123     for(int i = 1; i < n; i++)
    124     {
    125         while(first < last && !OnLeft(L[i], p[last-1])) last--;
    126         while(first < last && !OnLeft(L[i], p[first])) first++;
    127         q[++last] = L[i];
    128         if(fabs(Cross(q[last].v, q[last-1].v)) < eps)   //
    129         {
    130             last--;
    131             if(OnLeft(q[last], L[i].P)) q[last] = L[i];
    132         }
    133         if(first < last) p[last-1] = GetLineIntersection(q[last-1], q[last]);
    134     }
    135     while(first < last && !OnLeft(q[first], p[last-1])) last--; //
    136     if(last - first <= 1) return 0; //
    137     p[last] = GetLineIntersection(q[last], q[first]); //
    138     // 从deque复制到输出中
    139     int index=0;
    140     for(int i = first; i <= last; i++) ansPoly[index++]=p[i];
    141     return index;
    142 }
    143 
    144 double PolygonArea(int n,Point *p)
    145 {
    146     double area=0;
    147     for(int i=1; i<n-1; i++)
    148         area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    149     return area/2;
    150 }
    151 // vector<Line>  vec;
    152 //        vec.push_back(Line(Point(0,0),Point(1,0)));
    153 //        vec.push_back(Line(Point(10000,0),Point(0,1)));
    154 //        vec.push_back(Line(Point(10000,10000),Point(-1,0)));
    155 //        vec.push_back(Line(Point(0,10000),Point(0,-1)));
    156 //        Vector v=(p[1]-p[0]);
    157 //        vec.push_back(Line((p[1]+p[0])*0.5,Normal(v)));
    158 //        v=(p[2]-p[0]);
    159 //        vec.push_back(Line((p[2]+p[0])*0.5,Normal(v)));
    160 //        int m=HalfplaneIntersection(vec);
    161 //        double ans=PolygonArea(m,ansPoly);
    162 //        printf("%.3f
    ",ans/(1.0*10000*10000));
    163 Point p[5];
    164 void CC(Point *p)
    165 {
    166     for(int i=0; i<maxn; i++)
    167     {
    168         p[i].x=0;
    169         p[i].y=0;
    170     }
    171 }
    172 int main()
    173 {
    174 //  freopen("in.txt","r",stdin);
    175     double a1,a2,a3,a4,a5,a6;
    176     a5=(5.0*5*4)/(5*5*5-1);
    177     a2=0;
    178     while(cin>>p[0].x>>p[0].y>>p[1].x>>p[1].y>>p[2].x>>p[2].y>>p[3].x>>p[3].y)
    179     {
    180         CC(ansPoly);
    181         vector<Line>vec;
    182         vec.push_back(Line(Point(p[0].x,p[0].y),Point(p[1].x-p[0].x,p[1].y-p[0].y)));
    183         vec.push_back(Line(Point(p[1].x,p[1].y),Point(p[2].x-p[1].x,p[2].y-p[1].y)));
    184         vec.push_back(Line(Point(p[2].x,p[2].y),Point(p[3].x-p[2].x,p[3].y-p[2].y)));
    185         vec.push_back(Line(Point(p[3].x,p[3].y),Point(p[0].x-p[3].x,p[0].y-p[3].y)));
    186         vec.push_back(Line(Point(-0.5,-0.5),Point(-1,0)));
    187         int sou_num=HalfplaneIntersection(vec);
    188         a1=PolygonArea(sou_num,ansPoly);
    189 //        cout<<"a1:"<<a1<<endl;
    190 //        cout<<"sou_num:"<<sou_num<<endl;
    191 //        CC(ansPoly);
    192         vec.clear();
    193         vec.push_back(Line(Point(p[0].x,p[0].y),Point(p[1].x-p[0].x,p[1].y-p[0].y)));
    194         vec.push_back(Line(Point(p[1].x,p[1].y),Point(p[2].x-p[1].x,p[2].y-p[1].y)));
    195         vec.push_back(Line(Point(p[2].x,p[2].y),Point(p[3].x-p[2].x,p[3].y-p[2].y)));
    196         vec.push_back(Line(Point(p[3].x,p[3].y),Point(p[0].x-p[3].x,p[0].y-p[3].y)));
    197         vec.push_back(Line(Point(-0.5,-0.5),Point(0,1)));
    198         int west_num=HalfplaneIntersection(vec);
    199 //        cout<<ansPoly[3].y<<endl;
    200         a4=PolygonArea(west_num,ansPoly);
    201 //        cout<<"a4:"<<a4<<endl;
    202 //        cout<<"west_num:"<<west_num<<endl;
    203         CC(ansPoly);
    204         vec.clear();
    205         vec.push_back(Line(Point(p[0].x,p[0].y),Point(p[1].x-p[0].x,p[1].y-p[0].y)));
    206         vec.push_back(Line(Point(p[1].x,p[1].y),Point(p[2].x-p[1].x,p[2].y-p[1].y)));
    207         vec.push_back(Line(Point(p[2].x,p[2].y),Point(p[3].x-p[2].x,p[3].y-p[2].y)));
    208         vec.push_back(Line(Point(p[3].x,p[3].y),Point(p[0].x-p[3].x,p[0].y-p[3].y)));
    209         vec.push_back(Line(Point(-0.5,0.5),Point(1,0)));
    210         int nor_num=HalfplaneIntersection(vec);
    211         a6=PolygonArea(nor_num,ansPoly);
    212 //        cout<<"a6:"<<a6<<endl;
    213 //        cout<<"nor_num:"<<nor_num<<endl;
    214         CC(ansPoly);
    215         vec.clear();
    216         vec.push_back(Line(Point(p[0].x,p[0].y),Point(p[1].x-p[0].x,p[1].y-p[0].y)));
    217         vec.push_back(Line(Point(p[1].x,p[1].y),Point(p[2].x-p[1].x,p[2].y-p[1].y)));
    218         vec.push_back(Line(Point(p[2].x,p[2].y),Point(p[3].x-p[2].x,p[3].y-p[2].y)));
    219         vec.push_back(Line(Point(p[3].x,p[3].y),Point(p[0].x-p[3].x,p[0].y-p[3].y)));
    220         vec.push_back(Line(Point(0.5,0.5),Point(0,-1)));
    221         int east_num=HalfplaneIntersection(vec);
    222         a3=PolygonArea(east_num,ansPoly);
    223 //        cout<<"a3:"<<a3<<endl;
    224 //        cout<<"east_num:"<<east_num<<endl;
    225         long double ans1,ans2,ans3,ans4,ans5,ans6;
    226         double ans;
    227 //        anss=(5.0*a1)/(5*5*5-1)+2*(5.0*a2)/(5*5*5-1)+3*(5.0*a3)/(5*5*5-1)+4*(5.0*a4)/(5*5*5-1)+a5*5.0+6*(5.0*a6)/(5*5*5-1);
    228         ans1=(5.0*a1)/(5*5*5-1);
    229 //        cout<<"ans1:"<<ans1<<endl;
    230         ans2=(5.0*a2)/(5*5*5-1);
    231 //        cout<<"ans2:"<<ans2<<endl;
    232         ans3=3*(5.0*a3)/(5*5*5-1);
    233 //        cout<<"ans3:"<<ans3<<endl;
    234         ans4=4*(5.0*a4)/(5*5*5-1);
    235 //        cout<<"ans4:"<<ans4<<endl;
    236         ans5=5*a5;
    237 //        cout<<"ans5:"<<ans5<<endl;
    238         ans6=6*(5.0*a6)/(5*5*5-1);
    239 //        cout<<"ans6:"<<ans6<<endl;
    240         ans=ans1+ans2+ans3+ans4+ans5+ans6;
    241         printf("%.10lf
    ",ans);
    242     }
    243     return 0;
    244 }
    View Code
  • 相关阅读:
    Educational Codeforces Round 33 (Rated for Div. 2) B. Beautiful Divisors【进制思维/打表】
    Educational Codeforces Round 33 (Rated for Div. 2) A. Chess For Three【模拟/逻辑推理】
    java中的BigInteger
    动态规划-最长上升子序列(LIS模板)多解+变形
    Rain on your Parade---hdu2389(HK求最大匹配)
    Air Raid---hdu1151(最小路径覆盖)
    Swap---hdu2819(最大匹配)
    棋盘游戏---hdu1281(最大匹配)
    The Accomodation of Students---hdu2444(二分图,最大匹配)
    COURSES---poj1469 hdu1083(最大匹配)
  • 原文地址:https://www.cnblogs.com/ITUPC/p/5225480.html
Copyright © 2020-2023  润新知