• 再探-python高级用法装饰器


    五、装饰器

    装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。

    1、先明白这段代码

    #### 第一波 ####
    def foo():
        print('foo')
    
    foo     #表示是函数
    foo()   #表示执行foo函数
    
    #### 第二波 ####
    def foo():
        print('foo')
    
    foo = lambda x: x + 1
    
    foo()   # 执行下面的lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了另外一个匿名函数
    

    运行结果:

    --- in test1 func----
    140212571149040
    140212571149040
    --- in test1 func----
    

    2、需求来了

    初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

    ############### 基础平台提供的功能如下 ###############
    
    def f1():
        print('f1')
    
    def f2():
        print('f2')
    
    def f3():
        print('f3')
    
    def f4():
        print('f4')
    
    ############### 业务部门A 调用基础平台提供的功能 ###############
    
    f1()
    f2()
    f3()
    f4()
    
    ############### 业务部门B 调用基础平台提供的功能 ###############
    
    f1()
    f2()
    f3()
    f4()
    

    目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

    老大把工作交给 A,他是这么做的:

    跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

    老大把工作交给 B,他是这么做的:

    ############### 基础平台提供的功能如下 ############### 
    
    def f1():
        # 验证1
        # 验证2
        # 验证3
        print('f1')
    
    def f2():
        # 验证1
        # 验证2
        # 验证3
        print('f2')
    
    def f3():
        # 验证1
        # 验证2
        # 验证3
        print('f3')
    
    def f4():
        # 验证1
        # 验证2
        # 验证3
        print('f4')
    
    ############### 业务部门不变 ############### 
    ### 业务部门A 调用基础平台提供的功能### 
    
    f1()
    f2()
    f3()
    f4()
    
    ### 业务部门B 调用基础平台提供的功能 ### 
    
    f1()
    f2()
    f3()
    f4()
    

    老大把工作交给 C,他是这么做的:

    只对基础平台的代码进行重构,其他业务部门无需做任何修改

    ############### 基础平台提供的功能如下 ############### 
    
    def check_login():
        # 验证1
        # 验证2
        # 验证3
        pass
    
    
    def f1():
    
        check_login()
    
        print('f1')
    
    def f2():
    
        check_login()
    
        print('f2')
    
    def f3():
    
        check_login()
    
        print('f3')
    
    def f4():
    
        check_login()
    
        print('f4')
    
    老大说:

    写代码要遵循开放封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

    • 封闭:已实现的功能代码块
    • 开放:对扩展开发

    如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了C一个实现方案:

    def w1(func):
        def inner():
            # 验证1
            # 验证2
            # 验证3
            func()
        return inner
    
    @w1
    def f1():
        print('f1')
    @w1
    def f2():
        print('f2')
    @w1
    def f3():
        print('f3')
    @w1
    def f4():
        print('f4')
    

    对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

    C心惊胆战的问了下,这段代码的内部执行原理是什么呢?

    单独以f1为例:

    def w1(func):
        def inner():
            # 验证1
            # 验证2
            # 验证3
            func()
        return inner
    
    @w1
    def f1():
        print('f1')
    

    python解释器就会从上到下解释代码,步骤如下:

    1. def w1(func): == > 将w1函数加载到内存
    2. @w1

    没错, 从表面上看解释器仅仅会解释这两句代码,因为函数在 没有被调用之前其内部代码不会被执行。

    从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章, @函数名 是python的一种语法糖。

    上例@w1内部会执行一下操作:

    执行w1函数

    执行w1函数 ,并将 @w1 下面的函数作为w1函数的参数,即:

    @w1 等价于 w1(f1)

    所以,内部就会去执行:

    def inner(): 
        #验证 1
        #验证 2
        #验证 3
        f1()     # func是参数,此时 func 等于 f1 
    return inner# 返回的 inner,inner代表的是函数,非执行函数 ,其实就是将原来的 f1 函数塞进另外一个函数中
    

    w1的返回值

    将执行完的w1函数返回值 赋值 给@w1下面的函数的函数名f1 即将w1的返回值再重新赋值给 f1,即:

    新f1 = def inner(): 
                #验证 1
                #验证 2
                #验证 3
                原来f1()
            return inner
    

    所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在新f1 函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。

    如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着

    3. 再议装饰器

    #定义函数:完成包裹数据
    def makeBold(fn):
        def wrapped():
            return "<b>" + fn() + "</b>"
        return wrapped
    
    #定义函数:完成包裹数据
    def makeItalic(fn):
        def wrapped():
            return "<i>" + fn() + "</i>"
        return wrapped
    
    @makeBold
    def test1():
        return "hello world-1"
    
    @makeItalic
    def test2():
        return "hello world-2"
    
    @makeBold
    @makeItalic
    def test3():
        return "hello world-3"
    
    print(test1()))
    print(test2()))
    print(test3()))
    

    运行结果:

    <b>hello world-1</b>
    <i>hello world-2</i>
    <b><i>hello world-3</i></b>
    

    4. 装饰器(decorator)功能

    1. 引入日志

    2. 函数执行时间统计

    3. 执行函数前预备处理
    4. 执行函数后清理功能
    5. 权限校验等场景
    6. 缓存

    5. 装饰器示例

    例1:无参数的函数

    from time import ctime, sleep
    
    def timefun(func):
        def wrappedfunc():
            print("%s called at %s"%(func.__name__, ctime()))
            func()
        return wrappedfunc
    
    @timefun
    def foo():
        print("I am foo")
    
    foo()
    sleep(2)
    foo()
    

    上面代码理解装饰器执行行为可理解成

    foo = timefun(foo)
    #foo先作为参数赋值给func后,foo接收指向timefun返回的wrappedfunc
    foo()
    #调用foo(),即等价调用wrappedfunc()
    #内部函数wrappedfunc被引用,所以外部函数的func变量(自由变量)并没有释放
    #func里保存的是原foo函数对象
    

    例2:被装饰的函数有参数

    from time import ctime, sleep
    
    def timefun(func):
        def wrappedfunc(a, b):
            print("%s called at %s"%(func.__name__, ctime()))
            print(a, b)
            func(a, b)
        return wrappedfunc
    
    @timefun
    def foo(a, b):
        print(a+b)
    
    foo(3,5)
    sleep(2)
    foo(2,4)
    

    例3:被装饰的函数有不定长参数

    from time import ctime, sleep
    
    def timefun(func):
        def wrappedfunc(*args, **kwargs):
            print("%s called at %s"%(func.__name__, ctime()))
            func(*args, **kwargs)
        return wrappedfunc
    
    @timefun
    def foo(a, b, c):
        print(a+b+c)
    
    foo(3,5,7)
    sleep(2)
    foo(2,4,9)
    

    例4:装饰器中的return

    from time import ctime, sleep
    
    def timefun(func):
        def wrappedfunc():
            print("%s called at %s"%(func.__name__, ctime()))
            func()
        return wrappedfunc
    
    @timefun
    def foo():
        print("I am foo")
    
    @timefun
    def getInfo():
        return '----hahah---'
    
    foo()
    sleep(2)
    foo()
    
    
    print(getInfo())
    

    执行结果:

    foo called at Fri Nov  4 21:55:35 2016
    I am foo
    foo called at Fri Nov  4 21:55:37 2016
    I am foo
    getInfo called at Fri Nov  4 21:55:37 2016
    None
    

    如果修改装饰器为return func(),则运行结果:

    foo called at Fri Nov  4 21:55:57 2016
    I am foo
    foo called at Fri Nov  4 21:55:59 2016
    I am foo
    getInfo called at Fri Nov  4 21:55:59 2016
    ----hahah---
    

    总结:

    一般情况下为了让装饰器更通用,可以有return

    例5:装饰器带参数,在原有装饰器的基础上,设置外部变量

    #decorator2.py
    
    from time import ctime, sleep
    
    def timefun_arg(pre="hello"):
        def timefun(func):
            def wrappedfunc():
                print("%s called at %s %s"%(func.__name__, ctime(), pre))
                return func()
            return wrappedfunc
        return timefun
    
    @timefun_arg("itcast")
    def foo():
        print("I am foo")
    
    @timefun_arg("python")
    def too():
        print("I am too")
    
    foo()
    sleep(2)
    foo()
    
    too()
    sleep(2)
    too()
    

    可以理解为

    foo()==timefun_arg("itcast")(foo)()
    

    例6:类装饰器(扩展,非重点)

    装饰器函数其实是这样一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。在Python中一般callable对象都是函数,但也有例外。只要某个对象重载了

    __call__()

    方法,那么这个对象就是callable的。

    class Test():
        def __call__(self):
            print('call me!')
    
    t = Test()
    t()  # call me
    

    类装饰器demo

    class Itcast(object): 
        def __init__(self, func): 
            print("--初始化--")
            self._func = func 
    
        def __call__(self):  
            print('--装饰器中的功能--')
            self._func()  
    
    @Itcast
    def showpy():
        print('showpy')
    
    showpy()#如果把这句话注释,重新运行程序,依然会看到"--初始化--"
  • 相关阅读:
    并行数据的并行转串行
    色彩空间转换仿真与模型搭建
    布隆过滤器介绍和在java中应用举例
    java9初探
    个人博客开通啦!
    MyBatis多租户隔离插件开发
    手动解析Excel获取文件元数据
    解决Shiro+SpringBoot自定义Filter不生效问题
    基于Redis的分布式锁实现
    解决tomcat同时部署两个SpringBoot应用提示InstanceAlreadyExistsException
  • 原文地址:https://www.cnblogs.com/Huangsh2017Come-on/p/7617831.html
Copyright © 2020-2023  润新知