• 离散无记忆信道容量的迭代算法(Bluhat Arimoto算法)


    import numpy as np
    
    
    def blahut_arimoto(p_y_x: np.ndarray,  log_base: float = 2, thresh: float = 1e-12, max_iter: int = 1e3) -> tuple:
        '''
        Maximize the capacity between I(X;Y)
        p_y_x: each row represnets probability assinmnet
        log_base: the base of the log when calaculating the capacity
        thresh: the threshold of the update, finish the calculation when gettting to it.
        max_iter: the maximum iterations of the calculation
        '''
    
        # Input test
        assert np.abs(p_y_x.sum(axis=1).mean() - 1) < 1e-6
        assert p_y_x.shape[0] > 1
    
        # The number of inputs: size of |X|
        m = p_y_x.shape[0]
    
        # The number of outputs: size of |Y|
        n = p_y_x.shape[1]
    
        # Initialize the prior uniformly
        r = np.ones((1, m)) / m
    
        # Compute the r(x) that maximizes the capacity
        for iteration in range(int(max_iter)):
    
            q = r.T * p_y_x
            q = q / np.sum(q, axis=0)
    
            r1 = np.prod(np.power(q, p_y_x), axis=1)
            r1 = r1 / np.sum(r1)
    
            tolerance = np.linalg.norm(r1 - r)
            r = r1
            if tolerance < thresh:
                break
    
        # Calculate the capacity
        r = r.flatten()
        c = 0
        for i in range(m):
            if r[i] > 0:
                c += np.sum(r[i] * p_y_x[i, :] *
                            np.log(q[i, :] / r[i] + 1e-16))
        c = c / np.log(log_base)
        return c, r

    e = 0.2
    p1 = [1-e, e]
    p2 = [e, 1-e]
    p_y_x = np.asarray([p1, p2])
    C, r = blahut_arimoto(p_y_x)
    print('Capacity: ', C)
    print('The prior: ', r)
    
    # The analytic solution of the capaciy
    H_P_e = - e * np.log2(e) - (1-e) * np.log2(1-e)
    print('Anatliyic capacity: ', (1 - H_P_e))

    输出为:

    Capacity:  0.2780719051126379
    The prior:  [0.5 0.5]
    Anatliyic capacity:  0.2780719051126377

    e = 0.1
    p1 = [1-e, e, 0]
    p2 = [0, e, 1-e]
    p_y_x = np.asarray([p1, p2])
    C, r = blahut_arimoto(p_y_x, log_base=2)
    print('Capacity: ', C)
    print('The prior: ', r)
    
    # The analytic solution of the capaciy
    print('Anatliyic capacity: ', (1 - e))

    输出为:

    Capacity:  0.9
    The prior:  [0.5 0.5]
    Anatliyic capacity:  0.9



    ! jupyter nbconvert blahut_arimoto_algorithm.ipynb --to="python" --output-dir .   #将jupyter notebook下的.ipynb文件另存为.py文件
    
    

    完整实战代码为:

    # 2019年11月9日17:01:21
    import numpy as np
    
    def bluhat_arimoto(p_y_x: np.ndarray, thresh: float = 1e-12, max_iter: int = 1e3) -> tuple:
        '''
        Maximize the capacity between I(X;Y)
        p_y_x: each row represnets probability assinmnet
        thresh: the threshold of the update, finish the calculation when gettting to it.
        max_iter: the maximum iterations of the calculation
        '''
    
        # 检查输入是否符合要求
        assert np.abs(p_y_x.sum(axis=1).mean() - 1) < 1e-6,'转移概率矩阵不符合要求'  #axis=1表示矩阵每一行相加    .mean()表示矩阵所有元素的平均值
        assert p_y_x.shape[0] > 1,'至少要有两个信源'
    
        # 信源信宿的个数
        m = p_y_x.shape[0]  #有 m 个信源
        n = p_y_x.shape[1]  #有 n 个信宿
    
        # 初始化输入分布r(x)为等概分布
        r = np.ones((1, m)) / m
    
        # Compute the r(x) that maximizes the capacity
        for iteration in range(int(max_iter)):
    
            Q = r.T * p_y_x
            Q = Q / np.sum(Q, axis=0)  # Q的每一列相加
    
            r1 = np.prod(np.power(Q, p_y_x), axis=1) #power(x, y),计算 x 的 y 次方; np.prod()计算数组元素乘积
            r1 = r1 / np.sum(r1)
    
            tolerance = np.linalg.norm(r1 - r)  #范数是一个标量,默认计算L2范数
            r = r1
            if tolerance < thresh:
                break
    
        # Calculate the capacity
        r = r.flatten()  #将矩阵转化为一维数组
        C = 0
        for i in range(m):
            if r[i] > 0:
                C += np.sum(r[i] * p_y_x[i, :] * np.log2(Q[i, :] / r[i])) # 公式4.3.14
        return C, r
    
    
    # e = 0.1
    # p1 = [1-e, e, 0]
    # p2 = [0, e, 1-e]
    
    p1 = [0.5, 0.3, 0.2]
    p2 = [0.3, 0.5, 0.2]
    
    # p1 = [1/3, 1/3, 1/6, 1/6]
    # p2 = [1/6, 1/3, 1/6, 1/3]
    
    # p1 = [1/3, 1/3, 0, 1/3]
    # p2 = [0, 1/3, 1/3, 1/3]
    # p3 = [1/3, 0, 1/3, 1/3]
    
    # p1 = [1, 0, 0]
    # p2 = [0, 1/2, 1/2]
    # p3 = [0, 1/2, 1/2]
    
    # p1 = [1, 0, 0]
    # p2 = [0, 1, 0]
    # p3 = [0, 0, 1]
    #
    # p1 = [1/2, 1/2, 0, 0]
    # p2 = [0, 1/2, 1/2, 0]
    # p3 = [0, 0, 1/2, 1/2]
    # p4 = [1/2, 0, 0, 1/2]
    
    p_y_x = np.asarray([p1, p2])
    print('信道转移概率矩阵P为:
    ')
    print('P = {}
    '.format(p_y_x))
    C, r = bluhat_arimoto(p_y_x)
    print('信道容量为: {:.4f}bit/符号'.format(C))
    print('输入分布r(x)为: ', r)
    Bluhat_Arimoto Code
  • 相关阅读:
    【原创】Kakfa cluster包源代码分析
    【原创】Kakfa log包源代码分析(二)
    【原创】Kakfa log包源代码分析(一)
    【原创】Kakfa metrics包源代码分析
    【原创】Kakfa network包源代码分析
    【原创】Kakfa common包源代码分析
    【原创】Kakfa serializer包源代码分析
    基于OpenCV/TensorFlow的手写MNIST文字匹配
    随机游走 点云匹配
    OpenCV Mat&Operations
  • 原文地址:https://www.cnblogs.com/HuangYJ/p/11826777.html
Copyright © 2020-2023  润新知