• OpenCV Mat&Operations


    /*M///////////////////////////////////////////////////////////////////////////////////////
    //
    // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
    //
    // By downloading, copying, installing or using the software you agree to this license.
    // If you do not agree to this license, do not download, install,
    // copy or use the software.
    //
    //
    // License Agreement
    // For Open Source Computer Vision Library
    //
    // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
    // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
    // Third party copyrights are property of their respective owners.
    //
    // Redistribution and use in source and binary forms, with or without modification,
    // are permitted provided that the following conditions are met:
    //
    // * Redistribution's of source code must retain the above copyright notice,
    // this list of conditions and the following disclaimer.
    //
    // * Redistribution's in binary form must reproduce the above copyright notice,
    // this list of conditions and the following disclaimer in the documentation
    // and/or other materials provided with the distribution.
    //
    // * The name of the copyright holders may not be used to endorse or promote products
    // derived from this software without specific prior written permission.
    //
    // This software is provided by the copyright holders and contributors "as is" and
    // any express or implied warranties, including, but not limited to, the implied
    // warranties of merchantability and fitness for a particular purpose are disclaimed.
    // In no event shall the Intel Corporation or contributors be liable for any direct,
    // indirect, incidental, special, exemplary, or consequential damages
    // (including, but not limited to, procurement of substitute goods or services;
    // loss of use, data, or profits; or business interruption) however caused
    // and on any theory of liability, whether in contract, strict liability,
    // or tort (including negligence or otherwise) arising in any way out of
    // the use of this software, even if advised of the possibility of such damage.
    //
    //M*/

    #ifndef __OPENCV_CORE_MATRIX_OPERATIONS_HPP__
    #define __OPENCV_CORE_MATRIX_OPERATIONS_HPP__

    #ifndef SKIP_INCLUDES
    #include <limits.h>
    #include <string.h>
    #endif // SKIP_INCLUDES

    #ifdef __cplusplus

    namespace cv
    {

    //////////////////////////////// Mat ////////////////////////////////

    inline void Mat::initEmpty()
    {
    flags = MAGIC_VAL;
    dims = rows = cols = 0;
    data = datastart = dataend = datalimit = 0;
    refcount = 0;
    allocator = 0;
    }

    inline Mat::Mat() : size(&rows)
    {
    initEmpty();
    }

    inline Mat::Mat(int _rows, int _cols, int _type) : size(&rows)
    {
    initEmpty();
    create(_rows, _cols, _type);
    }

    inline Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) : size(&rows)
    {
    initEmpty();
    create(_rows, _cols, _type);
    *this = _s;
    }

    inline Mat::Mat(Size _sz, int _type) : size(&rows)
    {
    initEmpty();
    create( _sz.height, _sz.width, _type );
    }

    inline Mat::Mat(Size _sz, int _type, const Scalar& _s) : size(&rows)
    {
    initEmpty();
    create(_sz.height, _sz.width, _type);
    *this = _s;
    }

    inline Mat::Mat(int _dims, const int* _sz, int _type) : size(&rows)
    {
    initEmpty();
    create(_dims, _sz, _type);
    }

    inline Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) : size(&rows)
    {
    initEmpty();
    create(_dims, _sz, _type);
    *this = _s;
    }

    inline Mat::Mat(const Mat& m)
    : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
    refcount(m.refcount), datastart(m.datastart), dataend(m.dataend),
    datalimit(m.datalimit), allocator(m.allocator), size(&rows)
    {
    if( refcount )
    CV_XADD(refcount, 1);
    if( m.dims <= 2 )
    {
    step[0] = m.step[0]; step[1] = m.step[1];
    }
    else
    {
    dims = 0;
    copySize(m);
    }
    }

    inline Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
    : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols),
    data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend(0),
    datalimit(0), allocator(0), size(&rows)
    {
    size_t esz = CV_ELEM_SIZE(_type), minstep = cols*esz;
    if( _step == AUTO_STEP )
    {
    _step = minstep;
    flags |= CONTINUOUS_FLAG;
    }
    else
    {
    if( rows == 1 ) _step = minstep;
    CV_DbgAssert( _step >= minstep );
    flags |= _step == minstep ? CONTINUOUS_FLAG : 0;
    }
    step[0] = _step; step[1] = esz;
    datalimit = datastart + _step*rows;
    dataend = datalimit - _step + minstep;
    }

    inline Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
    : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width),
    data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend(0),
    datalimit(0), allocator(0), size(&rows)
    {
    size_t esz = CV_ELEM_SIZE(_type), minstep = cols*esz;
    if( _step == AUTO_STEP )
    {
    _step = minstep;
    flags |= CONTINUOUS_FLAG;
    }
    else
    {
    if( rows == 1 ) _step = minstep;
    CV_DbgAssert( _step >= minstep );
    flags |= _step == minstep ? CONTINUOUS_FLAG : 0;
    }
    step[0] = _step; step[1] = esz;
    datalimit = datastart + _step*rows;
    dataend = datalimit - _step + minstep;
    }


    template<typename _Tp> inline Mat::Mat(const vector<_Tp>& vec, bool copyData)
    : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
    dims(2), rows((int)vec.size()), cols(1), data(0), refcount(0),
    datastart(0), dataend(0), allocator(0), size(&rows)
    {
    if(vec.empty())
    return;
    if( !copyData )
    {
    step[0] = step[1] = sizeof(_Tp);
    data = datastart = (uchar*)&vec[0];
    datalimit = dataend = datastart + rows*step[0];
    }
    else
    Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this);
    }


    template<typename _Tp, int n> inline Mat::Mat(const Vec<_Tp, n>& vec, bool copyData)
    : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
    dims(2), rows(n), cols(1), data(0), refcount(0),
    datastart(0), dataend(0), allocator(0), size(&rows)
    {
    if( !copyData )
    {
    step[0] = step[1] = sizeof(_Tp);
    data = datastart = (uchar*)vec.val;
    datalimit = dataend = datastart + rows*step[0];
    }
    else
    Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this);
    }


    template<typename _Tp, int m, int n> inline Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData)
    : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
    dims(2), rows(m), cols(n), data(0), refcount(0),
    datastart(0), dataend(0), allocator(0), size(&rows)
    {
    if( !copyData )
    {
    step[0] = cols*sizeof(_Tp);
    step[1] = sizeof(_Tp);
    data = datastart = (uchar*)M.val;
    datalimit = dataend = datastart + rows*step[0];
    }
    else
    Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this);
    }


    template<typename _Tp> inline Mat::Mat(const Point_<_Tp>& pt, bool copyData)
    : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
    dims(2), rows(2), cols(1), data(0), refcount(0),
    datastart(0), dataend(0), allocator(0), size(&rows)
    {
    if( !copyData )
    {
    step[0] = step[1] = sizeof(_Tp);
    data = datastart = (uchar*)&pt.x;
    datalimit = dataend = datastart + rows*step[0];
    }
    else
    {
    create(2, 1, DataType<_Tp>::type);
    ((_Tp*)data)[0] = pt.x;
    ((_Tp*)data)[1] = pt.y;
    }
    }


    template<typename _Tp> inline Mat::Mat(const Point3_<_Tp>& pt, bool copyData)
    : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
    dims(2), rows(3), cols(1), data(0), refcount(0),
    datastart(0), dataend(0), allocator(0), size(&rows)
    {
    if( !copyData )
    {
    step[0] = step[1] = sizeof(_Tp);
    data = datastart = (uchar*)&pt.x;
    datalimit = dataend = datastart + rows*step[0];
    }
    else
    {
    create(3, 1, DataType<_Tp>::type);
    ((_Tp*)data)[0] = pt.x;
    ((_Tp*)data)[1] = pt.y;
    ((_Tp*)data)[2] = pt.z;
    }
    }


    template<typename _Tp> inline Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer)
    : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
    dims(0), rows(0), cols(0), data(0), refcount(0),
    datastart(0), dataend(0), allocator(0), size(&rows)
    {
    *this = *commaInitializer;
    }

    inline Mat::~Mat()
    {
    release();
    if( step.p != step.buf )
    fastFree(step.p);
    }

    inline Mat& Mat::operator = (const Mat& m)
    {
    if( this != &m )
    {
    if( m.refcount )
    CV_XADD(m.refcount, 1);
    release();
    flags = m.flags;
    if( dims <= 2 && m.dims <= 2 )
    {
    dims = m.dims;
    rows = m.rows;
    cols = m.cols;
    step[0] = m.step[0];
    step[1] = m.step[1];
    }
    else
    copySize(m);
    data = m.data;
    datastart = m.datastart;
    dataend = m.dataend;
    datalimit = m.datalimit;
    refcount = m.refcount;
    allocator = m.allocator;
    }
    return *this;
    }

    inline Mat Mat::row(int y) const { return Mat(*this, Range(y, y+1), Range::all()); }
    inline Mat Mat::col(int x) const { return Mat(*this, Range::all(), Range(x, x+1)); }
    inline Mat Mat::rowRange(int startrow, int endrow) const
    { return Mat(*this, Range(startrow, endrow), Range::all()); }
    inline Mat Mat::rowRange(const Range& r) const
    { return Mat(*this, r, Range::all()); }
    inline Mat Mat::colRange(int startcol, int endcol) const
    { return Mat(*this, Range::all(), Range(startcol, endcol)); }
    inline Mat Mat::colRange(const Range& r) const
    { return Mat(*this, Range::all(), r); }

    inline Mat Mat::diag(const Mat& d)
    {
    CV_Assert( d.cols == 1 || d.rows == 1 );
    int len = d.rows + d.cols - 1;
    Mat m(len, len, d.type(), Scalar(0)), md = m.diag();
    if( d.cols == 1 )
    d.copyTo(md);
    else
    transpose(d, md);
    return m;
    }

    inline Mat Mat::clone() const
    {
    Mat m;
    copyTo(m);
    return m;
    }

    inline void Mat::assignTo( Mat& m, int _type ) const
    {
    if( _type < 0 )
    m = *this;
    else
    convertTo(m, _type);
    }

    inline void Mat::create(int _rows, int _cols, int _type)
    {
    _type &= TYPE_MASK;
    if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data )
    return;
    int sz[] = {_rows, _cols};
    create(2, sz, _type);
    }

    inline void Mat::create(Size _sz, int _type)
    {
    create(_sz.height, _sz.width, _type);
    }

    inline void Mat::addref()
    { if( refcount ) CV_XADD(refcount, 1); }

    inline void Mat::release()
    {
    if( refcount && CV_XADD(refcount, -1) == 1 )
    deallocate();
    data = datastart = dataend = datalimit = 0;
    for(int i = 0; i < dims; i++)
    size.p[i] = 0;
    refcount = 0;
    }

    inline Mat Mat::operator()( Range _rowRange, Range _colRange ) const
    {
    return Mat(*this, _rowRange, _colRange);
    }

    inline Mat Mat::operator()( const Rect& roi ) const
    { return Mat(*this, roi); }

    inline Mat Mat::operator()(const Range* ranges) const
    {
    return Mat(*this, ranges);
    }

    inline Mat::operator CvMat() const
    {
    CV_DbgAssert(dims <= 2);
    CvMat m = cvMat(rows, dims == 1 ? 1 : cols, type(), data);
    m.step = (int)step[0];
    m.type = (m.type & ~CONTINUOUS_FLAG) | (flags & CONTINUOUS_FLAG);
    return m;
    }

    inline bool Mat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; }
    inline bool Mat::isSubmatrix() const { return (flags & SUBMATRIX_FLAG) != 0; }
    inline size_t Mat::elemSize() const { return dims > 0 ? step.p[dims-1] : 0; }
    inline size_t Mat::elemSize1() const { return CV_ELEM_SIZE1(flags); }
    inline int Mat::type() const { return CV_MAT_TYPE(flags); }
    inline int Mat::depth() const { return CV_MAT_DEPTH(flags); }
    inline int Mat::channels() const { return CV_MAT_CN(flags); }
    inline size_t Mat::step1(int i) const { return step.p[i]/elemSize1(); }
    inline bool Mat::empty() const { return data == 0 || total() == 0; }
    inline size_t Mat::total() const
    {
    if( dims <= 2 )
    return (size_t)rows*cols;
    size_t p = 1;
    for( int i = 0; i < dims; i++ )
    p *= size[i];
    return p;
    }

    inline uchar* Mat::ptr(int y)
    {
    CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
    return data + step.p[0]*y;
    }

    inline const uchar* Mat::ptr(int y) const
    {
    CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
    return data + step.p[0]*y;
    }

    template<typename _Tp> inline _Tp* Mat::ptr(int y)
    {
    CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
    return (_Tp*)(data + step.p[0]*y);
    }

    template<typename _Tp> inline const _Tp* Mat::ptr(int y) const
    {
    CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
    return (const _Tp*)(data + step.p[0]*y);
    }


    inline uchar* Mat::ptr(int i0, int i1)
    {
    CV_DbgAssert( dims >= 2 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] );
    return data + i0*step.p[0] + i1*step.p[1];
    }

    inline const uchar* Mat::ptr(int i0, int i1) const
    {
    CV_DbgAssert( dims >= 2 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] );
    return data + i0*step.p[0] + i1*step.p[1];
    }

    template<typename _Tp> inline _Tp* Mat::ptr(int i0, int i1)
    {
    CV_DbgAssert( dims >= 2 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] );
    return (_Tp*)(data + i0*step.p[0] + i1*step.p[1]);
    }

    template<typename _Tp> inline const _Tp* Mat::ptr(int i0, int i1) const
    {
    CV_DbgAssert( dims >= 2 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] );
    return (const _Tp*)(data + i0*step.p[0] + i1*step.p[1]);
    }

    inline uchar* Mat::ptr(int i0, int i1, int i2)
    {
    CV_DbgAssert( dims >= 3 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] &&
    (unsigned)i2 < (unsigned)size.p[2] );
    return data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2];
    }

    inline const uchar* Mat::ptr(int i0, int i1, int i2) const
    {
    CV_DbgAssert( dims >= 3 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] &&
    (unsigned)i2 < (unsigned)size.p[2] );
    return data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2];
    }

    template<typename _Tp> inline _Tp* Mat::ptr(int i0, int i1, int i2)
    {
    CV_DbgAssert( dims >= 3 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] &&
    (unsigned)i2 < (unsigned)size.p[2] );
    return (_Tp*)(data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2]);
    }

    template<typename _Tp> inline const _Tp* Mat::ptr(int i0, int i1, int i2) const
    {
    CV_DbgAssert( dims >= 3 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] &&
    (unsigned)i2 < (unsigned)size.p[2] );
    return (const _Tp*)(data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2]);
    }

    inline uchar* Mat::ptr(const int* idx)
    {
    int i, d = dims;
    uchar* p = data;
    CV_DbgAssert( d >= 1 && p );
    for( i = 0; i < d; i++ )
    {
    CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] );
    p += idx[i]*step.p[i];
    }
    return p;
    }

    inline const uchar* Mat::ptr(const int* idx) const
    {
    int i, d = dims;
    uchar* p = data;
    CV_DbgAssert( d >= 1 && p );
    for( i = 0; i < d; i++ )
    {
    CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] );
    p += idx[i]*step.p[i];
    }
    return p;
    }

    template<typename _Tp> inline _Tp& Mat::at(int i0, int i1)
    {
    CV_DbgAssert( dims <= 2 && data && (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)(i1*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
    CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
    return ((_Tp*)(data + step.p[0]*i0))[i1];
    }

    template<typename _Tp> inline const _Tp& Mat::at(int i0, int i1) const
    {
    CV_DbgAssert( dims <= 2 && data && (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)(i1*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
    CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
    return ((const _Tp*)(data + step.p[0]*i0))[i1];
    }

    template<typename _Tp> inline _Tp& Mat::at(Point pt)
    {
    CV_DbgAssert( dims <= 2 && data && (unsigned)pt.y < (unsigned)size.p[0] &&
    (unsigned)(pt.x*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
    CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
    return ((_Tp*)(data + step.p[0]*pt.y))[pt.x];
    }

    template<typename _Tp> inline const _Tp& Mat::at(Point pt) const
    {
    CV_DbgAssert( dims <= 2 && data && (unsigned)pt.y < (unsigned)size.p[0] &&
    (unsigned)(pt.x*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
    CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
    return ((const _Tp*)(data + step.p[0]*pt.y))[pt.x];
    }

    template<typename _Tp> inline _Tp& Mat::at(int i0)
    {
    CV_DbgAssert( dims <= 2 && data &&
    (unsigned)i0 < (unsigned)(size.p[0]*size.p[1]) &&
    elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    if( isContinuous() || size.p[0] == 1 )
    return ((_Tp*)data)[i0];
    if( size.p[1] == 1 )
    return *(_Tp*)(data + step.p[0]*i0);
    int i = i0/cols, j = i0 - i*cols;
    return ((_Tp*)(data + step.p[0]*i))[j];
    }

    template<typename _Tp> inline const _Tp& Mat::at(int i0) const
    {
    CV_DbgAssert( dims <= 2 && data &&
    (unsigned)i0 < (unsigned)(size.p[0]*size.p[1]) &&
    elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    if( isContinuous() || size.p[0] == 1 )
    return ((const _Tp*)data)[i0];
    if( size.p[1] == 1 )
    return *(const _Tp*)(data + step.p[0]*i0);
    int i = i0/cols, j = i0 - i*cols;
    return ((const _Tp*)(data + step.p[0]*i))[j];
    }

    template<typename _Tp> inline _Tp& Mat::at(int i0, int i1, int i2)
    {
    CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    return *(_Tp*)ptr(i0, i1, i2);
    }
    template<typename _Tp> inline const _Tp& Mat::at(int i0, int i1, int i2) const
    {
    CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    return *(const _Tp*)ptr(i0, i1, i2);
    }
    template<typename _Tp> inline _Tp& Mat::at(const int* idx)
    {
    CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    return *(_Tp*)ptr(idx);
    }
    template<typename _Tp> inline const _Tp& Mat::at(const int* idx) const
    {
    CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    return *(const _Tp*)ptr(idx);
    }
    template<typename _Tp, int n> _Tp& Mat::at(const Vec<int, n>& idx)
    {
    CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    return *(_Tp*)ptr(idx.val);
    }
    template<typename _Tp, int n> inline const _Tp& Mat::at(const Vec<int, n>& idx) const
    {
    CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
    return *(const _Tp*)ptr(idx.val);
    }


    template<typename _Tp> inline MatConstIterator_<_Tp> Mat::begin() const
    {
    CV_DbgAssert( elemSize() == sizeof(_Tp) );
    return MatConstIterator_<_Tp>((const Mat_<_Tp>*)this);
    }

    template<typename _Tp> inline MatConstIterator_<_Tp> Mat::end() const
    {
    CV_DbgAssert( elemSize() == sizeof(_Tp) );
    MatConstIterator_<_Tp> it((const Mat_<_Tp>*)this);
    it += total();
    return it;
    }

    template<typename _Tp> inline MatIterator_<_Tp> Mat::begin()
    {
    CV_DbgAssert( elemSize() == sizeof(_Tp) );
    return MatIterator_<_Tp>((Mat_<_Tp>*)this);
    }

    template<typename _Tp> inline MatIterator_<_Tp> Mat::end()
    {
    CV_DbgAssert( elemSize() == sizeof(_Tp) );
    MatIterator_<_Tp> it((Mat_<_Tp>*)this);
    it += total();
    return it;
    }

    template<typename _Tp> inline Mat::operator vector<_Tp>() const
    {
    vector<_Tp> v;
    copyTo(v);
    return v;
    }

    template<typename _Tp, int n> inline Mat::operator Vec<_Tp, n>() const
    {
    CV_Assert( data && dims <= 2 && (rows == 1 || cols == 1) &&
    rows + cols - 1 == n && channels() == 1 );

    if( isContinuous() && type() == DataType<_Tp>::type )
    return Vec<_Tp, n>((_Tp*)data);
    Vec<_Tp, n> v; Mat tmp(rows, cols, DataType<_Tp>::type, v.val);
    convertTo(tmp, tmp.type());
    return v;
    }

    template<typename _Tp, int m, int n> inline Mat::operator Matx<_Tp, m, n>() const
    {
    CV_Assert( data && dims <= 2 && rows == m && cols == n && channels() == 1 );

    if( isContinuous() && type() == DataType<_Tp>::type )
    return Matx<_Tp, m, n>((_Tp*)data);
    Matx<_Tp, m, n> mtx; Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val);
    convertTo(tmp, tmp.type());
    return mtx;
    }


    template<typename _Tp> inline void Mat::push_back(const _Tp& elem)
    {
    if( !data )
    {
    CV_Assert((type()==0) || (DataType<_Tp>::type == type()));

    *this = Mat(1, 1, DataType<_Tp>::type, (void*)&elem).clone();
    return;
    }
    CV_Assert(DataType<_Tp>::type == type() && cols == 1
    /* && dims == 2 (cols == 1 implies dims == 2) */);
    uchar* tmp = dataend + step[0];
    if( !isSubmatrix() && isContinuous() && tmp <= datalimit )
    {
    *(_Tp*)(data + (size.p[0]++)*step.p[0]) = elem;
    dataend = tmp;
    }
    else
    push_back_(&elem);
    }

    template<typename _Tp> inline void Mat::push_back(const Mat_<_Tp>& m)
    {
    push_back((const Mat&)m);
    }

    inline Mat::MSize::MSize(int* _p) : p(_p) {}
    inline Size Mat::MSize::operator()() const
    {
    CV_DbgAssert(p[-1] <= 2);
    return Size(p[1], p[0]);
    }
    inline const int& Mat::MSize::operator[](int i) const { return p[i]; }
    inline int& Mat::MSize::operator[](int i) { return p[i]; }
    inline Mat::MSize::operator const int*() const { return p; }

    inline bool Mat::MSize::operator == (const MSize& sz) const
    {
    int d = p[-1], dsz = sz.p[-1];
    if( d != dsz )
    return false;
    if( d == 2 )
    return p[0] == sz.p[0] && p[1] == sz.p[1];

    for( int i = 0; i < d; i++ )
    if( p[i] != sz.p[i] )
    return false;
    return true;
    }

    inline bool Mat::MSize::operator != (const MSize& sz) const
    {
    return !(*this == sz);
    }

    inline Mat::MStep::MStep() { p = buf; p[0] = p[1] = 0; }
    inline Mat::MStep::MStep(size_t s) { p = buf; p[0] = s; p[1] = 0; }
    inline const size_t& Mat::MStep::operator[](int i) const { return p[i]; }
    inline size_t& Mat::MStep::operator[](int i) { return p[i]; }
    inline Mat::MStep::operator size_t() const
    {
    CV_DbgAssert( p == buf );
    return buf[0];
    }
    inline Mat::MStep& Mat::MStep::operator = (size_t s)
    {
    CV_DbgAssert( p == buf );
    buf[0] = s;
    return *this;
    }

    static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0)
    {
    return cvarrToMat(arr, copyData, true, coiMode);
    }

    ///////////////////////////////////////////// SVD //////////////////////////////////////////////////////

    inline SVD::SVD() {}
    inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); }
    inline void SVD::solveZ( InputArray m, OutputArray _dst )
    {
    Mat mtx = m.getMat();
    SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV));
    _dst.create(svd.vt.cols, 1, svd.vt.type());
    Mat dst = _dst.getMat();
    svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst);
    }

    template<typename _Tp, int m, int n, int nm> inline void
    SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt )
    {
    assert( nm == MIN(m, n));
    Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false);
    SVD::compute(_a, _w, _u, _vt);
    CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]);
    }

    template<typename _Tp, int m, int n, int nm> inline void
    SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w )
    {
    assert( nm == MIN(m, n));
    Mat _a(a, false), _w(w, false);
    SVD::compute(_a, _w);
    CV_Assert(_w.data == (uchar*)&w.val[0]);
    }

    template<typename _Tp, int m, int n, int nm, int nb> inline void
    SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u,
    const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs,
    Matx<_Tp, n, nb>& dst )
    {
    assert( nm == MIN(m, n));
    Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false);
    SVD::backSubst(_w, _u, _vt, _rhs, _dst);
    CV_Assert(_dst.data == (uchar*)&dst.val[0]);
    }

    ///////////////////////////////// Mat_<_Tp> ////////////////////////////////////

    template<typename _Tp> inline Mat_<_Tp>::Mat_()
    : Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols)
    : Mat(_rows, _cols, DataType<_Tp>::type) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value)
    : Mat(_rows, _cols, DataType<_Tp>::type) { *this = value; }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(Size _sz)
    : Mat(_sz.height, _sz.width, DataType<_Tp>::type) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(Size _sz, const _Tp& value)
    : Mat(_sz.height, _sz.width, DataType<_Tp>::type) { *this = value; }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz)
    : Mat(_dims, _sz, DataType<_Tp>::type) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz, const _Tp& _s)
    : Mat(_dims, _sz, DataType<_Tp>::type, Scalar(_s)) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const Range* ranges)
    : Mat(m, ranges) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat& m)
    : Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; *this = m; }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m)
    : Mat(m) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols, _Tp* _data, size_t steps)
    : Mat(_rows, _cols, DataType<_Tp>::type, _data, steps) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m, const Range& _rowRange, const Range& _colRange)
    : Mat(m, _rowRange, _colRange) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m, const Rect& roi)
    : Mat(m, roi) {}

    template<typename _Tp> template<int n> inline
    Mat_<_Tp>::Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData)
    : Mat(n/DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&vec)
    {
    CV_Assert(n%DataType<_Tp>::channels == 0);
    if( copyData )
    *this = clone();
    }

    template<typename _Tp> template<int m, int n> inline
    Mat_<_Tp>::Mat_(const Matx<typename DataType<_Tp>::channel_type,m,n>& M, bool copyData)
    : Mat(m, n/DataType<_Tp>::channels, DataType<_Tp>::type, (void*)&M)
    {
    CV_Assert(n % DataType<_Tp>::channels == 0);
    if( copyData )
    *this = clone();
    }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData)
    : Mat(2/DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt)
    {
    CV_Assert(2 % DataType<_Tp>::channels == 0);
    if( copyData )
    *this = clone();
    }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData)
    : Mat(3/DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt)
    {
    CV_Assert(3 % DataType<_Tp>::channels == 0);
    if( copyData )
    *this = clone();
    }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const MatCommaInitializer_<_Tp>& commaInitializer)
    : Mat(commaInitializer) {}

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const vector<_Tp>& vec, bool copyData)
    : Mat(vec, copyData) {}

    template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat& m)
    {
    if( DataType<_Tp>::type == m.type() )
    {
    Mat::operator = (m);
    return *this;
    }
    if( DataType<_Tp>::depth == m.depth() )
    {
    return (*this = m.reshape(DataType<_Tp>::channels, m.dims, 0));
    }
    CV_DbgAssert(DataType<_Tp>::channels == m.channels());
    m.convertTo(*this, type());
    return *this;
    }

    template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat_& m)
    {
    Mat::operator=(m);
    return *this;
    }

    template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const _Tp& s)
    {
    typedef typename DataType<_Tp>::vec_type VT;
    Mat::operator=(Scalar((const VT&)s));
    return *this;
    }

    template<typename _Tp> inline void Mat_<_Tp>::create(int _rows, int _cols)
    {
    Mat::create(_rows, _cols, DataType<_Tp>::type);
    }

    template<typename _Tp> inline void Mat_<_Tp>::create(Size _sz)
    {
    Mat::create(_sz, DataType<_Tp>::type);
    }

    template<typename _Tp> inline void Mat_<_Tp>::create(int _dims, const int* _sz)
    {
    Mat::create(_dims, _sz, DataType<_Tp>::type);
    }


    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::cross(const Mat_& m) const
    { return Mat_<_Tp>(Mat::cross(m)); }

    template<typename _Tp> template<typename T2> inline Mat_<_Tp>::operator Mat_<T2>() const
    { return Mat_<T2>(*this); }

    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::row(int y) const
    { return Mat_(*this, Range(y, y+1), Range::all()); }
    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::col(int x) const
    { return Mat_(*this, Range::all(), Range(x, x+1)); }
    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::diag(int d) const
    { return Mat_(Mat::diag(d)); }
    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::clone() const
    { return Mat_(Mat::clone()); }

    template<typename _Tp> inline size_t Mat_<_Tp>::elemSize() const
    {
    CV_DbgAssert( Mat::elemSize() == sizeof(_Tp) );
    return sizeof(_Tp);
    }

    template<typename _Tp> inline size_t Mat_<_Tp>::elemSize1() const
    {
    CV_DbgAssert( Mat::elemSize1() == sizeof(_Tp)/DataType<_Tp>::channels );
    return sizeof(_Tp)/DataType<_Tp>::channels;
    }
    template<typename _Tp> inline int Mat_<_Tp>::type() const
    {
    CV_DbgAssert( Mat::type() == DataType<_Tp>::type );
    return DataType<_Tp>::type;
    }
    template<typename _Tp> inline int Mat_<_Tp>::depth() const
    {
    CV_DbgAssert( Mat::depth() == DataType<_Tp>::depth );
    return DataType<_Tp>::depth;
    }
    template<typename _Tp> inline int Mat_<_Tp>::channels() const
    {
    CV_DbgAssert( Mat::channels() == DataType<_Tp>::channels );
    return DataType<_Tp>::channels;
    }
    template<typename _Tp> inline size_t Mat_<_Tp>::stepT(int i) const { return step.p[i]/elemSize(); }
    template<typename _Tp> inline size_t Mat_<_Tp>::step1(int i) const { return step.p[i]/elemSize1(); }

    template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::adjustROI( int dtop, int dbottom, int dleft, int dright )
    { return (Mat_<_Tp>&)(Mat::adjustROI(dtop, dbottom, dleft, dright)); }

    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Range& _rowRange, const Range& _colRange ) const
    { return Mat_<_Tp>(*this, _rowRange, _colRange); }

    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Rect& roi ) const
    { return Mat_<_Tp>(*this, roi); }

    template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const
    { return Mat_<_Tp>(*this, ranges); }

    template<typename _Tp> inline _Tp* Mat_<_Tp>::operator [](int y)
    { return (_Tp*)ptr(y); }
    template<typename _Tp> inline const _Tp* Mat_<_Tp>::operator [](int y) const
    { return (const _Tp*)ptr(y); }

    template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0, int i1)
    {
    CV_DbgAssert( dims <= 2 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] &&
    type() == DataType<_Tp>::type );
    return ((_Tp*)(data + step.p[0]*i0))[i1];
    }

    template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0, int i1) const
    {
    CV_DbgAssert( dims <= 2 && data &&
    (unsigned)i0 < (unsigned)size.p[0] &&
    (unsigned)i1 < (unsigned)size.p[1] &&
    type() == DataType<_Tp>::type );
    return ((const _Tp*)(data + step.p[0]*i0))[i1];
    }

    template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(Point pt)
    {
    CV_DbgAssert( dims <= 2 && data &&
    (unsigned)pt.y < (unsigned)size.p[0] &&
    (unsigned)pt.x < (unsigned)size.p[1] &&
    type() == DataType<_Tp>::type );
    return ((_Tp*)(data + step.p[0]*pt.y))[pt.x];
    }

    template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(Point pt) const
    {
    CV_DbgAssert( dims <= 2 && data &&
    (unsigned)pt.y < (unsigned)size.p[0] &&
    (unsigned)pt.x < (unsigned)size.p[1] &&
    type() == DataType<_Tp>::type );
    return ((const _Tp*)(data + step.p[0]*pt.y))[pt.x];
    }

    template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(const int* idx)
    {
    return Mat::at<_Tp>(idx);
    }

    template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(const int* idx) const
    {
    return Mat::at<_Tp>(idx);
    }

    template<typename _Tp> template<int n> inline _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx)
    {
    return Mat::at<_Tp>(idx);
    }

    template<typename _Tp> template<int n> inline const _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) const
    {
    return Mat::at<_Tp>(idx);
    }

    template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0)
    {
    return this->at<_Tp>(i0);
    }

    template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0) const
    {
    return this->at<_Tp>(i0);
    }

    template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2)
    {
    return this->at<_Tp>(i0, i1, i2);
    }

    template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) const
    {
    return this->at<_Tp>(i0, i1, i2);
    }


    template<typename _Tp> inline Mat_<_Tp>::operator vector<_Tp>() const
    {
    vector<_Tp> v;
    copyTo(v);
    return v;
    }

    template<typename _Tp> template<int n> inline Mat_<_Tp>::operator Vec<typename DataType<_Tp>::channel_type, n>() const
    {
    CV_Assert(n % DataType<_Tp>::channels == 0);
    return this->Mat::operator Vec<typename DataType<_Tp>::channel_type, n>();
    }

    template<typename _Tp> template<int m, int n> inline Mat_<_Tp>::operator Matx<typename DataType<_Tp>::channel_type, m, n>() const
    {
    CV_Assert(n % DataType<_Tp>::channels == 0);

    Matx<typename DataType<_Tp>::channel_type, m, n> res = this->Mat::operator Matx<typename DataType<_Tp>::channel_type, m, n>();
    return res;
    }

    template<typename T1, typename T2, typename Op> inline void
    process( const Mat_<T1>& m1, Mat_<T2>& m2, Op op )
    {
    int y, x, rows = m1.rows, cols = m1.cols;

    CV_DbgAssert( m1.size() == m2.size() );

    for( y = 0; y < rows; y++ )
    {
    const T1* src = m1[y];
    T2* dst = m2[y];

    for( x = 0; x < cols; x++ )
    dst[x] = op(src[x]);
    }
    }

    template<typename T1, typename T2, typename T3, typename Op> inline void
    process( const Mat_<T1>& m1, const Mat_<T2>& m2, Mat_<T3>& m3, Op op )
    {
    int y, x, rows = m1.rows, cols = m1.cols;

    CV_DbgAssert( m1.size() == m2.size() );

    for( y = 0; y < rows; y++ )
    {
    const T1* src1 = m1[y];
    const T2* src2 = m2[y];
    T3* dst = m3[y];

    for( x = 0; x < cols; x++ )
    dst[x] = op( src1[x], src2[x] );
    }
    }


    /////////////////////////////// Input/Output Arrays /////////////////////////////////

    template<typename _Tp> inline _InputArray::_InputArray(const vector<_Tp>& vec)
    : flags(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type), obj((void*)&vec) {}

    template<typename _Tp> inline _InputArray::_InputArray(const vector<vector<_Tp> >& vec)
    : flags(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type), obj((void*)&vec) {}

    template<typename _Tp> inline _InputArray::_InputArray(const vector<Mat_<_Tp> >& vec)
    : flags(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type), obj((void*)&vec) {}

    template<typename _Tp, int m, int n> inline _InputArray::_InputArray(const Matx<_Tp, m, n>& mtx)
    : flags(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type), obj((void*)&mtx), sz(n, m) {}

    template<typename _Tp> inline _InputArray::_InputArray(const _Tp* vec, int n)
    : flags(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type), obj((void*)vec), sz(n, 1) {}

    inline _InputArray::_InputArray(const Scalar& s)
    : flags(FIXED_TYPE + FIXED_SIZE + MATX + CV_64F), obj((void*)&s), sz(1, 4) {}

    template<typename _Tp> inline _InputArray::_InputArray(const Mat_<_Tp>& m)
    : flags(FIXED_TYPE + MAT + DataType<_Tp>::type), obj((void*)&m) {}

    template<typename _Tp> inline _OutputArray::_OutputArray(vector<_Tp>& vec)
    : _InputArray(vec) {}
    template<typename _Tp> inline _OutputArray::_OutputArray(vector<vector<_Tp> >& vec)
    : _InputArray(vec) {}
    template<typename _Tp> inline _OutputArray::_OutputArray(vector<Mat_<_Tp> >& vec)
    : _InputArray(vec) {}
    template<typename _Tp> inline _OutputArray::_OutputArray(Mat_<_Tp>& m)
    : _InputArray(m) {}
    template<typename _Tp, int m, int n> inline _OutputArray::_OutputArray(Matx<_Tp, m, n>& mtx)
    : _InputArray(mtx) {}
    template<typename _Tp> inline _OutputArray::_OutputArray(_Tp* vec, int n)
    : _InputArray(vec, n) {}

    template<typename _Tp> inline _OutputArray::_OutputArray(const vector<_Tp>& vec)
    : _InputArray(vec) {flags |= FIXED_SIZE;}
    template<typename _Tp> inline _OutputArray::_OutputArray(const vector<vector<_Tp> >& vec)
    : _InputArray(vec) {flags |= FIXED_SIZE;}
    template<typename _Tp> inline _OutputArray::_OutputArray(const vector<Mat_<_Tp> >& vec)
    : _InputArray(vec) {flags |= FIXED_SIZE;}

    template<typename _Tp> inline _OutputArray::_OutputArray(const Mat_<_Tp>& m)
    : _InputArray(m) {flags |= FIXED_SIZE;}
    template<typename _Tp, int m, int n> inline _OutputArray::_OutputArray(const Matx<_Tp, m, n>& mtx)
    : _InputArray(mtx) {}
    template<typename _Tp> inline _OutputArray::_OutputArray(const _Tp* vec, int n)
    : _InputArray(vec, n) {}

    //////////////////////////////////// Matrix Expressions /////////////////////////////////////////

    class CV_EXPORTS MatOp
    {
    public:
    MatOp() {};
    virtual ~MatOp() {};

    virtual bool elementWise(const MatExpr& expr) const;
    virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
    virtual void roi(const MatExpr& expr, const Range& rowRange,
    const Range& colRange, MatExpr& res) const;
    virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
    virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
    virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
    virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
    virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
    virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
    virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
    virtual void augAssignXor(const MatExpr& expr, Mat& m) const;

    virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
    virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;

    virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
    virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;

    virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
    virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;

    virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
    virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;

    virtual void abs(const MatExpr& expr, MatExpr& res) const;

    virtual void transpose(const MatExpr& expr, MatExpr& res) const;
    virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
    virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;

    virtual Size size(const MatExpr& expr) const;
    virtual int type(const MatExpr& expr) const;
    };


    class CV_EXPORTS MatExpr
    {
    public:
    MatExpr() : op(0), flags(0), a(Mat()), b(Mat()), c(Mat()), alpha(0), beta(0), s(Scalar()) {}
    MatExpr(const MatOp* _op, int _flags, const Mat& _a=Mat(), const Mat& _b=Mat(),
    const Mat& _c=Mat(), double _alpha=1, double _beta=1, const Scalar& _s=Scalar())
    : op(_op), flags(_flags), a(_a), b(_b), c(_c), alpha(_alpha), beta(_beta), s(_s) {}
    explicit MatExpr(const Mat& m);
    operator Mat() const
    {
    Mat m;
    op->assign(*this, m);
    return m;
    }

    template<typename _Tp> operator Mat_<_Tp>() const
    {
    Mat_<_Tp> m;
    op->assign(*this, m, DataType<_Tp>::type);
    return m;
    }

    MatExpr row(int y) const;
    MatExpr col(int x) const;
    MatExpr diag(int d=0) const;
    MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
    MatExpr operator()( const Rect& roi ) const;

    Mat cross(const Mat& m) const;
    double dot(const Mat& m) const;

    MatExpr t() const;
    MatExpr inv(int method = DECOMP_LU) const;
    MatExpr mul(const MatExpr& e, double scale=1) const;
    MatExpr mul(const Mat& m, double scale=1) const;

    Size size() const;
    int type() const;

    const MatOp* op;
    int flags;

    Mat a, b, c;
    double alpha, beta;
    Scalar s;
    };


    CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
    CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
    CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
    CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
    CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
    CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
    CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);

    CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
    CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
    CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
    CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
    CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
    CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
    CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);

    CV_EXPORTS MatExpr operator - (const Mat& m);
    CV_EXPORTS MatExpr operator - (const MatExpr& e);

    CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator * (const Mat& a, double s);
    CV_EXPORTS MatExpr operator * (double s, const Mat& a);
    CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
    CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
    CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
    CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
    CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);

    CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator / (const Mat& a, double s);
    CV_EXPORTS MatExpr operator / (double s, const Mat& a);
    CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
    CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
    CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
    CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
    CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);

    CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator < (const Mat& a, double s);
    CV_EXPORTS MatExpr operator < (double s, const Mat& a);

    CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
    CV_EXPORTS MatExpr operator <= (double s, const Mat& a);

    CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator == (const Mat& a, double s);
    CV_EXPORTS MatExpr operator == (double s, const Mat& a);

    CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator != (const Mat& a, double s);
    CV_EXPORTS MatExpr operator != (double s, const Mat& a);

    CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
    CV_EXPORTS MatExpr operator >= (double s, const Mat& a);

    CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator > (const Mat& a, double s);
    CV_EXPORTS MatExpr operator > (double s, const Mat& a);

    CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr min(const Mat& a, double s);
    CV_EXPORTS MatExpr min(double s, const Mat& a);

    CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr max(const Mat& a, double s);
    CV_EXPORTS MatExpr max(double s, const Mat& a);

    template<typename _Tp> static inline MatExpr min(const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    return cv::min((const Mat&)a, (const Mat&)b);
    }

    template<typename _Tp> static inline MatExpr min(const Mat_<_Tp>& a, double s)
    {
    return cv::min((const Mat&)a, s);
    }

    template<typename _Tp> static inline MatExpr min(double s, const Mat_<_Tp>& a)
    {
    return cv::min((const Mat&)a, s);
    }

    template<typename _Tp> static inline MatExpr max(const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    return cv::max((const Mat&)a, (const Mat&)b);
    }

    template<typename _Tp> static inline MatExpr max(const Mat_<_Tp>& a, double s)
    {
    return cv::max((const Mat&)a, s);
    }

    template<typename _Tp> static inline MatExpr max(double s, const Mat_<_Tp>& a)
    {
    return cv::max((const Mat&)a, s);
    }

    template<typename _Tp> static inline void min(const Mat_<_Tp>& a, const Mat_<_Tp>& b, Mat_<_Tp>& c)
    {
    cv::min((const Mat&)a, (const Mat&)b, (Mat&)c);
    }

    template<typename _Tp> static inline void min(const Mat_<_Tp>& a, double s, Mat_<_Tp>& c)
    {
    cv::min((const Mat&)a, s, (Mat&)c);
    }

    template<typename _Tp> static inline void min(double s, const Mat_<_Tp>& a, Mat_<_Tp>& c)
    {
    cv::min((const Mat&)a, s, (Mat&)c);
    }

    template<typename _Tp> static inline void max(const Mat_<_Tp>& a, const Mat_<_Tp>& b, Mat_<_Tp>& c)
    {
    cv::max((const Mat&)a, (const Mat&)b, (Mat&)c);
    }

    template<typename _Tp> static inline void max(const Mat_<_Tp>& a, double s, Mat_<_Tp>& c)
    {
    cv::max((const Mat&)a, s, (Mat&)c);
    }

    template<typename _Tp> static inline void max(double s, const Mat_<_Tp>& a, Mat_<_Tp>& c)
    {
    cv::max((const Mat&)a, s, (Mat&)c);
    }


    CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
    CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);

    CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
    CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);

    CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
    CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
    CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);

    CV_EXPORTS MatExpr operator ~(const Mat& m);

    CV_EXPORTS MatExpr abs(const Mat& m);
    CV_EXPORTS MatExpr abs(const MatExpr& e);

    template<typename _Tp> static inline MatExpr abs(const Mat_<_Tp>& m)
    {
    return cv::abs((const Mat&)m);
    }

    ////////////////////////////// Augmenting algebraic operations //////////////////////////////////

    inline Mat& Mat::operator = (const MatExpr& e)
    {
    e.op->assign(e, *this);
    return *this;
    }

    template<typename _Tp> inline Mat_<_Tp>::Mat_(const MatExpr& e)
    {
    e.op->assign(e, *this, DataType<_Tp>::type);
    }

    template<typename _Tp> Mat_<_Tp>& Mat_<_Tp>::operator = (const MatExpr& e)
    {
    e.op->assign(e, *this, DataType<_Tp>::type);
    return *this;
    }

    static inline Mat& operator += (const Mat& a, const Mat& b)
    {
    add(a, b, (Mat&)a);
    return (Mat&)a;
    }

    static inline Mat& operator += (const Mat& a, const Scalar& s)
    {
    add(a, s, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    add(a, b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const Scalar& s)
    {
    add(a, s, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator += (const Mat& a, const MatExpr& b)
    {
    b.op->augAssignAdd(b, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const MatExpr& b)
    {
    b.op->augAssignAdd(b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator -= (const Mat& a, const Mat& b)
    {
    subtract(a, b, (Mat&)a);
    return (Mat&)a;
    }

    static inline Mat& operator -= (const Mat& a, const Scalar& s)
    {
    subtract(a, s, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    subtract(a, b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const Scalar& s)
    {
    subtract(a, s, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator -= (const Mat& a, const MatExpr& b)
    {
    b.op->augAssignSubtract(b, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const MatExpr& b)
    {
    b.op->augAssignSubtract(b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator *= (const Mat& a, const Mat& b)
    {
    gemm(a, b, 1, Mat(), 0, (Mat&)a, 0);
    return (Mat&)a;
    }

    static inline Mat& operator *= (const Mat& a, double s)
    {
    a.convertTo((Mat&)a, -1, s);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    gemm(a, b, 1, Mat(), 0, (Mat&)a, 0);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, double s)
    {
    a.convertTo((Mat&)a, -1, s);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator *= (const Mat& a, const MatExpr& b)
    {
    b.op->augAssignMultiply(b, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const MatExpr& b)
    {
    b.op->augAssignMultiply(b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator /= (const Mat& a, const Mat& b)
    {
    divide(a, b, (Mat&)a);
    return (Mat&)a;
    }

    static inline Mat& operator /= (const Mat& a, double s)
    {
    a.convertTo((Mat&)a, -1, 1./s);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    divide(a, b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, double s)
    {
    a.convertTo((Mat&)a, -1, 1./s);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator /= (const Mat& a, const MatExpr& b)
    {
    b.op->augAssignDivide(b, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline
    Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b)
    {
    b.op->augAssignDivide(b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    ////////////////////////////// Logical operations ///////////////////////////////

    static inline Mat& operator &= (const Mat& a, const Mat& b)
    {
    bitwise_and(a, b, (Mat&)a);
    return (Mat&)a;
    }

    static inline Mat& operator &= (const Mat& a, const Scalar& s)
    {
    bitwise_and(a, s, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline Mat_<_Tp>&
    operator &= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    bitwise_and(a, b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline Mat_<_Tp>&
    operator &= (const Mat_<_Tp>& a, const Scalar& s)
    {
    bitwise_and(a, s, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator |= (const Mat& a, const Mat& b)
    {
    bitwise_or(a, b, (Mat&)a);
    return (Mat&)a;
    }

    static inline Mat& operator |= (const Mat& a, const Scalar& s)
    {
    bitwise_or(a, s, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline Mat_<_Tp>&
    operator |= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    bitwise_or(a, b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline Mat_<_Tp>&
    operator |= (const Mat_<_Tp>& a, const Scalar& s)
    {
    bitwise_or(a, s, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    static inline Mat& operator ^= (const Mat& a, const Mat& b)
    {
    bitwise_xor(a, b, (Mat&)a);
    return (Mat&)a;
    }

    static inline Mat& operator ^= (const Mat& a, const Scalar& s)
    {
    bitwise_xor(a, s, (Mat&)a);
    return (Mat&)a;
    }

    template<typename _Tp> static inline Mat_<_Tp>&
    operator ^= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
    {
    bitwise_xor(a, b, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    template<typename _Tp> static inline Mat_<_Tp>&
    operator ^= (const Mat_<_Tp>& a, const Scalar& s)
    {
    bitwise_xor(a, s, (Mat&)a);
    return (Mat_<_Tp>&)a;
    }

    /////////////////////////////// Miscellaneous operations //////////////////////////////

    template<typename _Tp> void split(const Mat& src, vector<Mat_<_Tp> >& mv)
    { split(src, (vector<Mat>&)mv ); }

    //////////////////////////////////////////////////////////////

    template<typename _Tp> inline MatExpr Mat_<_Tp>::zeros(int rows, int cols)
    {
    return Mat::zeros(rows, cols, DataType<_Tp>::type);
    }

    template<typename _Tp> inline MatExpr Mat_<_Tp>::zeros(Size sz)
    {
    return Mat::zeros(sz, DataType<_Tp>::type);
    }

    template<typename _Tp> inline MatExpr Mat_<_Tp>::ones(int rows, int cols)
    {
    return Mat::ones(rows, cols, DataType<_Tp>::type);
    }

    template<typename _Tp> inline MatExpr Mat_<_Tp>::ones(Size sz)
    {
    return Mat::ones(sz, DataType<_Tp>::type);
    }

    template<typename _Tp> inline MatExpr Mat_<_Tp>::eye(int rows, int cols)
    {
    return Mat::eye(rows, cols, DataType<_Tp>::type);
    }

    template<typename _Tp> inline MatExpr Mat_<_Tp>::eye(Size sz)
    {
    return Mat::eye(sz, DataType<_Tp>::type);
    }

    //////////////////////////////// Iterators & Comma initializers //////////////////////////////////

    inline MatConstIterator::MatConstIterator()
    : m(0), elemSize(0), ptr(0), sliceStart(0), sliceEnd(0) {}

    inline MatConstIterator::MatConstIterator(const Mat* _m)
    : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0)
    {
    if( m && m->isContinuous() )
    {
    sliceStart = m->data;
    sliceEnd = sliceStart + m->total()*elemSize;
    }
    seek((const int*)0);
    }

    inline MatConstIterator::MatConstIterator(const Mat* _m, int _row, int _col)
    : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0)
    {
    CV_Assert(m && m->dims <= 2);
    if( m->isContinuous() )
    {
    sliceStart = m->data;
    sliceEnd = sliceStart + m->total()*elemSize;
    }
    int idx[]={_row, _col};
    seek(idx);
    }

    inline MatConstIterator::MatConstIterator(const Mat* _m, Point _pt)
    : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0)
    {
    CV_Assert(m && m->dims <= 2);
    if( m->isContinuous() )
    {
    sliceStart = m->data;
    sliceEnd = sliceStart + m->total()*elemSize;
    }
    int idx[]={_pt.y, _pt.x};
    seek(idx);
    }

    inline MatConstIterator::MatConstIterator(const MatConstIterator& it)
    : m(it.m), elemSize(it.elemSize), ptr(it.ptr), sliceStart(it.sliceStart), sliceEnd(it.sliceEnd)
    {}

    inline MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it )
    {
    m = it.m; elemSize = it.elemSize; ptr = it.ptr;
    sliceStart = it.sliceStart; sliceEnd = it.sliceEnd;
    return *this;
    }

    inline uchar* MatConstIterator::operator *() const { return ptr; }

    inline MatConstIterator& MatConstIterator::operator += (ptrdiff_t ofs)
    {
    if( !m || ofs == 0 )
    return *this;
    ptrdiff_t ofsb = ofs*elemSize;
    ptr += ofsb;
    if( ptr < sliceStart || sliceEnd <= ptr )
    {
    ptr -= ofsb;
    seek(ofs, true);
    }
    return *this;
    }

    inline MatConstIterator& MatConstIterator::operator -= (ptrdiff_t ofs)
    { return (*this += -ofs); }

    inline MatConstIterator& MatConstIterator::operator --()
    {
    if( m && (ptr -= elemSize) < sliceStart )
    {
    ptr += elemSize;
    seek(-1, true);
    }
    return *this;
    }

    inline MatConstIterator MatConstIterator::operator --(int)
    {
    MatConstIterator b = *this;
    *this += -1;
    return b;
    }

    inline MatConstIterator& MatConstIterator::operator ++()
    {
    if( m && (ptr += elemSize) >= sliceEnd )
    {
    ptr -= elemSize;
    seek(1, true);
    }
    return *this;
    }

    inline MatConstIterator MatConstIterator::operator ++(int)
    {
    MatConstIterator b = *this;
    *this += 1;
    return b;
    }

    template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_() {}

    template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m)
    : MatConstIterator(_m) {}

    template<typename _Tp> inline MatConstIterator_<_Tp>::
    MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col)
    : MatConstIterator(_m, _row, _col) {}

    template<typename _Tp> inline MatConstIterator_<_Tp>::
    MatConstIterator_(const Mat_<_Tp>* _m, Point _pt)
    : MatConstIterator(_m, _pt) {}

    template<typename _Tp> inline MatConstIterator_<_Tp>::
    MatConstIterator_(const MatConstIterator_& it)
    : MatConstIterator(it) {}

    template<typename _Tp> inline MatConstIterator_<_Tp>&
    MatConstIterator_<_Tp>::operator = (const MatConstIterator_& it )
    {
    MatConstIterator::operator = (it);
    return *this;
    }

    template<typename _Tp> inline _Tp MatConstIterator_<_Tp>::operator *() const { return *(_Tp*)(this->ptr); }

    template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator += (ptrdiff_t ofs)
    {
    MatConstIterator::operator += (ofs);
    return *this;
    }

    template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator -= (ptrdiff_t ofs)
    { return (*this += -ofs); }

    template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator --()
    {
    MatConstIterator::operator --();
    return *this;
    }

    template<typename _Tp> inline MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator --(int)
    {
    MatConstIterator_ b = *this;
    MatConstIterator::operator --();
    return b;
    }

    template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator ++()
    {
    MatConstIterator::operator ++();
    return *this;
    }

    template<typename _Tp> inline MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator ++(int)
    {
    MatConstIterator_ b = *this;
    MatConstIterator::operator ++();
    return b;
    }

    template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_() : MatConstIterator_<_Tp>() {}

    template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m)
    : MatConstIterator_<_Tp>(_m) {}

    template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col)
    : MatConstIterator_<_Tp>(_m, _row, _col) {}

    template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const Mat_<_Tp>* _m, Point _pt)
    : MatConstIterator_<_Tp>(_m, _pt) {}

    template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const Mat_<_Tp>* _m, const int* _idx)
    : MatConstIterator_<_Tp>(_m, _idx) {}

    template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const MatIterator_& it)
    : MatConstIterator_<_Tp>(it) {}

    template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator = (const MatIterator_<_Tp>& it )
    {
    MatConstIterator::operator = (it);
    return *this;
    }

    template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator *() const { return *(_Tp*)(this->ptr); }

    template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator += (ptrdiff_t ofs)
    {
    MatConstIterator::operator += (ofs);
    return *this;
    }

    template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator -= (ptrdiff_t ofs)
    {
    MatConstIterator::operator += (-ofs);
    return *this;
    }

    template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator --()
    {
    MatConstIterator::operator --();
    return *this;
    }

    template<typename _Tp> inline MatIterator_<_Tp> MatIterator_<_Tp>::operator --(int)
    {
    MatIterator_ b = *this;
    MatConstIterator::operator --();
    return b;
    }

    template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator ++()
    {
    MatConstIterator::operator ++();
    return *this;
    }

    template<typename _Tp> inline MatIterator_<_Tp> MatIterator_<_Tp>::operator ++(int)
    {
    MatIterator_ b = *this;
    MatConstIterator::operator ++();
    return b;
    }

    template<typename _Tp> inline Point MatConstIterator_<_Tp>::pos() const
    {
    if( !m )
    return Point();
    CV_DbgAssert( m->dims <= 2 );
    if( m->isContinuous() )
    {
    ptrdiff_t ofs = (const _Tp*)ptr - (const _Tp*)m->data;
    int y = (int)(ofs / m->cols), x = (int)(ofs - (ptrdiff_t)y*m->cols);
    return Point(x, y);
    }
    else
    {
    ptrdiff_t ofs = (uchar*)ptr - m->data;
    int y = (int)(ofs / m->step), x = (int)((ofs - y*m->step)/sizeof(_Tp));
    return Point(x, y);
    }
    }

    static inline bool
    operator == (const MatConstIterator& a, const MatConstIterator& b)
    { return a.m == b.m && a.ptr == b.ptr; }

    template<typename _Tp> static inline bool
    operator != (const MatConstIterator& a, const MatConstIterator& b)
    { return !(a == b); }

    template<typename _Tp> static inline bool
    operator == (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b)
    { return a.m == b.m && a.ptr == b.ptr; }

    template<typename _Tp> static inline bool
    operator != (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b)
    { return a.m != b.m || a.ptr != b.ptr; }

    template<typename _Tp> static inline bool
    operator == (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b)
    { return a.m == b.m && a.ptr == b.ptr; }

    template<typename _Tp> static inline bool
    operator != (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b)
    { return a.m != b.m || a.ptr != b.ptr; }

    static inline bool
    operator < (const MatConstIterator& a, const MatConstIterator& b)
    { return a.ptr < b.ptr; }

    static inline bool
    operator > (const MatConstIterator& a, const MatConstIterator& b)
    { return a.ptr > b.ptr; }

    static inline bool
    operator <= (const MatConstIterator& a, const MatConstIterator& b)
    { return a.ptr <= b.ptr; }

    static inline bool
    operator >= (const MatConstIterator& a, const MatConstIterator& b)
    { return a.ptr >= b.ptr; }

    CV_EXPORTS ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a);

    static inline MatConstIterator operator + (const MatConstIterator& a, ptrdiff_t ofs)
    { MatConstIterator b = a; return b += ofs; }

    static inline MatConstIterator operator + (ptrdiff_t ofs, const MatConstIterator& a)
    { MatConstIterator b = a; return b += ofs; }

    static inline MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs)
    { MatConstIterator b = a; return b += -ofs; }

    template<typename _Tp> static inline MatConstIterator_<_Tp>
    operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs)
    { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; }

    template<typename _Tp> static inline MatConstIterator_<_Tp>
    operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a)
    { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; }

    template<typename _Tp> static inline MatConstIterator_<_Tp>
    operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs)
    { MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatConstIterator_<_Tp>&)t; }

    inline uchar* MatConstIterator::operator [](ptrdiff_t i) const
    { return *(*this + i); }

    template<typename _Tp> inline _Tp MatConstIterator_<_Tp>::operator [](ptrdiff_t i) const
    { return *(_Tp*)MatConstIterator::operator [](i); }

    template<typename _Tp> static inline MatIterator_<_Tp>
    operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs)
    { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; }

    template<typename _Tp> static inline MatIterator_<_Tp>
    operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a)
    { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; }

    template<typename _Tp> static inline MatIterator_<_Tp>
    operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs)
    { MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatIterator_<_Tp>&)t; }

    template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const
    { return *(*this + i); }

    template<typename _Tp> inline MatConstIterator_<_Tp> Mat_<_Tp>::begin() const
    { return Mat::begin<_Tp>(); }

    template<typename _Tp> inline MatConstIterator_<_Tp> Mat_<_Tp>::end() const
    { return Mat::end<_Tp>(); }

    template<typename _Tp> inline MatIterator_<_Tp> Mat_<_Tp>::begin()
    { return Mat::begin<_Tp>(); }

    template<typename _Tp> inline MatIterator_<_Tp> Mat_<_Tp>::end()
    { return Mat::end<_Tp>(); }

    template<typename _Tp> inline MatCommaInitializer_<_Tp>::MatCommaInitializer_(Mat_<_Tp>* _m) : it(_m) {}

    template<typename _Tp> template<typename T2> inline MatCommaInitializer_<_Tp>&
    MatCommaInitializer_<_Tp>::operator , (T2 v)
    {
    CV_DbgAssert( this->it < ((const Mat_<_Tp>*)this->it.m)->end() );
    *this->it = _Tp(v); ++this->it;
    return *this;
    }

    template<typename _Tp> inline Mat_<_Tp> MatCommaInitializer_<_Tp>::operator *() const
    {
    CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() );
    return Mat_<_Tp>(*this->it.m);
    }

    template<typename _Tp> inline MatCommaInitializer_<_Tp>::operator Mat_<_Tp>() const
    {
    CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() );
    return Mat_<_Tp>(*this->it.m);
    }

    template<typename _Tp, typename T2> static inline MatCommaInitializer_<_Tp>
    operator << (const Mat_<_Tp>& m, T2 val)
    {
    MatCommaInitializer_<_Tp> commaInitializer((Mat_<_Tp>*)&m);
    return (commaInitializer, val);
    }

    //////////////////////////////// SparseMat ////////////////////////////////

    inline SparseMat::SparseMat()
    : flags(MAGIC_VAL), hdr(0)
    {
    }

    inline SparseMat::SparseMat(int _dims, const int* _sizes, int _type)
    : flags(MAGIC_VAL), hdr(0)
    {
    create(_dims, _sizes, _type);
    }

    inline SparseMat::SparseMat(const SparseMat& m)
    : flags(m.flags), hdr(m.hdr)
    {
    addref();
    }

    inline SparseMat::~SparseMat()
    {
    release();
    }

    inline SparseMat& SparseMat::operator = (const SparseMat& m)
    {
    if( this != &m )
    {
    if( m.hdr )
    CV_XADD(&m.hdr->refcount, 1);
    release();
    flags = m.flags;
    hdr = m.hdr;
    }
    return *this;
    }

    inline SparseMat& SparseMat::operator = (const Mat& m)
    { return (*this = SparseMat(m)); }

    inline SparseMat SparseMat::clone() const
    {
    SparseMat temp;
    this->copyTo(temp);
    return temp;
    }


    inline void SparseMat::assignTo( SparseMat& m, int _type ) const
    {
    if( _type < 0 )
    m = *this;
    else
    convertTo(m, _type);
    }

    inline void SparseMat::addref()
    { if( hdr ) CV_XADD(&hdr->refcount, 1); }

    inline void SparseMat::release()
    {
    if( hdr && CV_XADD(&hdr->refcount, -1) == 1 )
    delete hdr;
    hdr = 0;
    }

    inline size_t SparseMat::elemSize() const
    { return CV_ELEM_SIZE(flags); }

    inline size_t SparseMat::elemSize1() const
    { return CV_ELEM_SIZE1(flags); }

    inline int SparseMat::type() const
    { return CV_MAT_TYPE(flags); }

    inline int SparseMat::depth() const
    { return CV_MAT_DEPTH(flags); }

    inline int SparseMat::channels() const
    { return CV_MAT_CN(flags); }

    inline const int* SparseMat::size() const
    {
    return hdr ? hdr->size : 0;
    }

    inline int SparseMat::size(int i) const
    {
    if( hdr )
    {
    CV_DbgAssert((unsigned)i < (unsigned)hdr->dims);
    return hdr->size[i];
    }
    return 0;
    }

    inline int SparseMat::dims() const
    {
    return hdr ? hdr->dims : 0;
    }

    inline size_t SparseMat::nzcount() const
    {
    return hdr ? hdr->nodeCount : 0;
    }

    inline size_t SparseMat::hash(int i0) const
    {
    return (size_t)i0;
    }

    inline size_t SparseMat::hash(int i0, int i1) const
    {
    return (size_t)(unsigned)i0*HASH_SCALE + (unsigned)i1;
    }

    inline size_t SparseMat::hash(int i0, int i1, int i2) const
    {
    return ((size_t)(unsigned)i0*HASH_SCALE + (unsigned)i1)*HASH_SCALE + (unsigned)i2;
    }

    inline size_t SparseMat::hash(const int* idx) const
    {
    size_t h = (unsigned)idx[0];
    if( !hdr )
    return 0;
    int i, d = hdr->dims;
    for( i = 1; i < d; i++ )
    h = h*HASH_SCALE + (unsigned)idx[i];
    return h;
    }

    template<typename _Tp> inline _Tp& SparseMat::ref(int i0, size_t* hashval)
    { return *(_Tp*)((SparseMat*)this)->ptr(i0, true, hashval); }

    template<typename _Tp> inline _Tp& SparseMat::ref(int i0, int i1, size_t* hashval)
    { return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, true, hashval); }

    template<typename _Tp> inline _Tp& SparseMat::ref(int i0, int i1, int i2, size_t* hashval)
    { return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, i2, true, hashval); }

    template<typename _Tp> inline _Tp& SparseMat::ref(const int* idx, size_t* hashval)
    { return *(_Tp*)((SparseMat*)this)->ptr(idx, true, hashval); }

    template<typename _Tp> inline _Tp SparseMat::value(int i0, size_t* hashval) const
    {
    const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval);
    return p ? *p : _Tp();
    }

    template<typename _Tp> inline _Tp SparseMat::value(int i0, int i1, size_t* hashval) const
    {
    const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval);
    return p ? *p : _Tp();
    }

    template<typename _Tp> inline _Tp SparseMat::value(int i0, int i1, int i2, size_t* hashval) const
    {
    const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval);
    return p ? *p : _Tp();
    }

    template<typename _Tp> inline _Tp SparseMat::value(const int* idx, size_t* hashval) const
    {
    const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval);
    return p ? *p : _Tp();
    }

    template<typename _Tp> inline const _Tp* SparseMat::find(int i0, size_t* hashval) const
    { return (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); }

    template<typename _Tp> inline const _Tp* SparseMat::find(int i0, int i1, size_t* hashval) const
    { return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); }

    template<typename _Tp> inline const _Tp* SparseMat::find(int i0, int i1, int i2, size_t* hashval) const
    { return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); }

    template<typename _Tp> inline const _Tp* SparseMat::find(const int* idx, size_t* hashval) const
    { return (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); }

    template<typename _Tp> inline _Tp& SparseMat::value(Node* n)
    { return *(_Tp*)((uchar*)n + hdr->valueOffset); }

    template<typename _Tp> inline const _Tp& SparseMat::value(const Node* n) const
    { return *(const _Tp*)((const uchar*)n + hdr->valueOffset); }

    inline SparseMat::Node* SparseMat::node(size_t nidx)
    { return (Node*)(void*)&hdr->pool[nidx]; }

    inline const SparseMat::Node* SparseMat::node(size_t nidx) const
    { return (const Node*)(void*)&hdr->pool[nidx]; }

    inline SparseMatIterator SparseMat::begin()
    { return SparseMatIterator(this); }

    inline SparseMatConstIterator SparseMat::begin() const
    { return SparseMatConstIterator(this); }

    inline SparseMatIterator SparseMat::end()
    { SparseMatIterator it(this); it.seekEnd(); return it; }

    inline SparseMatConstIterator SparseMat::end() const
    { SparseMatConstIterator it(this); it.seekEnd(); return it; }

    template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat::begin()
    { return SparseMatIterator_<_Tp>(this); }

    template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat::begin() const
    { return SparseMatConstIterator_<_Tp>(this); }

    template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat::end()
    { SparseMatIterator_<_Tp> it(this); it.seekEnd(); return it; }

    template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat::end() const
    { SparseMatConstIterator_<_Tp> it(this); it.seekEnd(); return it; }


    inline SparseMatConstIterator::SparseMatConstIterator()
    : m(0), hashidx(0), ptr(0)
    {
    }

    inline SparseMatConstIterator::SparseMatConstIterator(const SparseMatConstIterator& it)
    : m(it.m), hashidx(it.hashidx), ptr(it.ptr)
    {
    }

    static inline bool operator == (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2)
    { return it1.m == it2.m && it1.ptr == it2.ptr; }

    static inline bool operator != (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2)
    { return !(it1 == it2); }


    inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseMatConstIterator& it)
    {
    if( this != &it )
    {
    m = it.m;
    hashidx = it.hashidx;
    ptr = it.ptr;
    }
    return *this;
    }

    template<typename _Tp> inline const _Tp& SparseMatConstIterator::value() const
    { return *(_Tp*)ptr; }

    inline const SparseMat::Node* SparseMatConstIterator::node() const
    {
    return ptr && m && m->hdr ?
    (const SparseMat::Node*)(void*)(ptr - m->hdr->valueOffset) : 0;
    }

    inline SparseMatConstIterator SparseMatConstIterator::operator ++(int)
    {
    SparseMatConstIterator it = *this;
    ++*this;
    return it;
    }


    inline void SparseMatConstIterator::seekEnd()
    {
    if( m && m->hdr )
    {
    hashidx = m->hdr->hashtab.size();
    ptr = 0;
    }
    }

    inline SparseMatIterator::SparseMatIterator()
    {}

    inline SparseMatIterator::SparseMatIterator(SparseMat* _m)
    : SparseMatConstIterator(_m)
    {}

    inline SparseMatIterator::SparseMatIterator(const SparseMatIterator& it)
    : SparseMatConstIterator(it)
    {
    }

    inline SparseMatIterator& SparseMatIterator::operator = (const SparseMatIterator& it)
    {
    (SparseMatConstIterator&)*this = it;
    return *this;
    }

    template<typename _Tp> inline _Tp& SparseMatIterator::value() const
    { return *(_Tp*)ptr; }

    inline SparseMat::Node* SparseMatIterator::node() const
    {
    return (SparseMat::Node*)SparseMatConstIterator::node();
    }

    inline SparseMatIterator& SparseMatIterator::operator ++()
    {
    SparseMatConstIterator::operator ++();
    return *this;
    }

    inline SparseMatIterator SparseMatIterator::operator ++(int)
    {
    SparseMatIterator it = *this;
    ++*this;
    return it;
    }


    template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_()
    { flags = MAGIC_VAL | DataType<_Tp>::type; }

    template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(int _dims, const int* _sizes)
    : SparseMat(_dims, _sizes, DataType<_Tp>::type)
    {}

    template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const SparseMat& m)
    {
    if( m.type() == DataType<_Tp>::type )
    *this = (const SparseMat_<_Tp>&)m;
    else
    m.convertTo(*this, DataType<_Tp>::type);
    }

    template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const SparseMat_<_Tp>& m)
    {
    this->flags = m.flags;
    this->hdr = m.hdr;
    if( this->hdr )
    CV_XADD(&this->hdr->refcount, 1);
    }

    template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const Mat& m)
    {
    SparseMat sm(m);
    *this = sm;
    }

    template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const CvSparseMat* m)
    {
    SparseMat sm(m);
    *this = sm;
    }

    template<typename _Tp> inline SparseMat_<_Tp>&
    SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m)
    {
    if( this != &m )
    {
    if( m.hdr ) CV_XADD(&m.hdr->refcount, 1);
    release();
    flags = m.flags;
    hdr = m.hdr;
    }
    return *this;
    }

    template<typename _Tp> inline SparseMat_<_Tp>&
    SparseMat_<_Tp>::operator = (const SparseMat& m)
    {
    if( m.type() == DataType<_Tp>::type )
    return (*this = (const SparseMat_<_Tp>&)m);
    m.convertTo(*this, DataType<_Tp>::type);
    return *this;
    }

    template<typename _Tp> inline SparseMat_<_Tp>&
    SparseMat_<_Tp>::operator = (const Mat& m)
    { return (*this = SparseMat(m)); }

    template<typename _Tp> inline SparseMat_<_Tp>
    SparseMat_<_Tp>::clone() const
    {
    SparseMat_<_Tp> m;
    this->copyTo(m);
    return m;
    }

    template<typename _Tp> inline void
    SparseMat_<_Tp>::create(int _dims, const int* _sizes)
    {
    SparseMat::create(_dims, _sizes, DataType<_Tp>::type);
    }

    template<typename _Tp> inline
    SparseMat_<_Tp>::operator CvSparseMat*() const
    {
    return SparseMat::operator CvSparseMat*();
    }

    template<typename _Tp> inline int SparseMat_<_Tp>::type() const
    { return DataType<_Tp>::type; }

    template<typename _Tp> inline int SparseMat_<_Tp>::depth() const
    { return DataType<_Tp>::depth; }

    template<typename _Tp> inline int SparseMat_<_Tp>::channels() const
    { return DataType<_Tp>::channels; }

    template<typename _Tp> inline _Tp&
    SparseMat_<_Tp>::ref(int i0, size_t* hashval)
    { return SparseMat::ref<_Tp>(i0, hashval); }

    template<typename _Tp> inline _Tp
    SparseMat_<_Tp>::operator()(int i0, size_t* hashval) const
    { return SparseMat::value<_Tp>(i0, hashval); }

    template<typename _Tp> inline _Tp&
    SparseMat_<_Tp>::ref(int i0, int i1, size_t* hashval)
    { return SparseMat::ref<_Tp>(i0, i1, hashval); }

    template<typename _Tp> inline _Tp
    SparseMat_<_Tp>::operator()(int i0, int i1, size_t* hashval) const
    { return SparseMat::value<_Tp>(i0, i1, hashval); }

    template<typename _Tp> inline _Tp&
    SparseMat_<_Tp>::ref(int i0, int i1, int i2, size_t* hashval)
    { return SparseMat::ref<_Tp>(i0, i1, i2, hashval); }

    template<typename _Tp> inline _Tp
    SparseMat_<_Tp>::operator()(int i0, int i1, int i2, size_t* hashval) const
    { return SparseMat::value<_Tp>(i0, i1, i2, hashval); }

    template<typename _Tp> inline _Tp&
    SparseMat_<_Tp>::ref(const int* idx, size_t* hashval)
    { return SparseMat::ref<_Tp>(idx, hashval); }

    template<typename _Tp> inline _Tp
    SparseMat_<_Tp>::operator()(const int* idx, size_t* hashval) const
    { return SparseMat::value<_Tp>(idx, hashval); }

    template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat_<_Tp>::begin()
    { return SparseMatIterator_<_Tp>(this); }

    template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::begin() const
    { return SparseMatConstIterator_<_Tp>(this); }

    template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat_<_Tp>::end()
    { SparseMatIterator_<_Tp> it(this); it.seekEnd(); return it; }

    template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::end() const
    { SparseMatConstIterator_<_Tp> it(this); it.seekEnd(); return it; }

    template<typename _Tp> inline
    SparseMatConstIterator_<_Tp>::SparseMatConstIterator_()
    {}

    template<typename _Tp> inline
    SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat_<_Tp>* _m)
    : SparseMatConstIterator(_m)
    {}

    template<typename _Tp> inline
    SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat* _m)
    : SparseMatConstIterator(_m)
    {
    CV_Assert( _m->type() == DataType<_Tp>::type );
    }

    template<typename _Tp> inline
    SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMatConstIterator_<_Tp>& it)
    : SparseMatConstIterator(it)
    {}

    template<typename _Tp> inline SparseMatConstIterator_<_Tp>&
    SparseMatConstIterator_<_Tp>::operator = (const SparseMatConstIterator_<_Tp>& it)
    { return reinterpret_cast<SparseMatConstIterator_<_Tp>&>
    (*reinterpret_cast<SparseMatConstIterator*>(this) =
    reinterpret_cast<const SparseMatConstIterator&>(it)); }

    template<typename _Tp> inline const _Tp&
    SparseMatConstIterator_<_Tp>::operator *() const
    { return *(const _Tp*)this->ptr; }

    template<typename _Tp> inline SparseMatConstIterator_<_Tp>&
    SparseMatConstIterator_<_Tp>::operator ++()
    {
    SparseMatConstIterator::operator ++();
    return *this;
    }

    template<typename _Tp> inline SparseMatConstIterator_<_Tp>
    SparseMatConstIterator_<_Tp>::operator ++(int)
    {
    SparseMatConstIterator_<_Tp> it = *this;
    SparseMatConstIterator::operator ++();
    return it;
    }

    template<typename _Tp> inline
    SparseMatIterator_<_Tp>::SparseMatIterator_()
    {}

    template<typename _Tp> inline
    SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat_<_Tp>* _m)
    : SparseMatConstIterator_<_Tp>(_m)
    {}

    template<typename _Tp> inline
    SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat* _m)
    : SparseMatConstIterator_<_Tp>(_m)
    {}

    template<typename _Tp> inline
    SparseMatIterator_<_Tp>::SparseMatIterator_(const SparseMatIterator_<_Tp>& it)
    : SparseMatConstIterator_<_Tp>(it)
    {}

    template<typename _Tp> inline SparseMatIterator_<_Tp>&
    SparseMatIterator_<_Tp>::operator = (const SparseMatIterator_<_Tp>& it)
    { return reinterpret_cast<SparseMatIterator_<_Tp>&>
    (*reinterpret_cast<SparseMatConstIterator*>(this) =
    reinterpret_cast<const SparseMatConstIterator&>(it)); }

    template<typename _Tp> inline _Tp&
    SparseMatIterator_<_Tp>::operator *() const
    { return *(_Tp*)this->ptr; }

    template<typename _Tp> inline SparseMatIterator_<_Tp>&
    SparseMatIterator_<_Tp>::operator ++()
    {
    SparseMatConstIterator::operator ++();
    return *this;
    }

    template<typename _Tp> inline SparseMatIterator_<_Tp>
    SparseMatIterator_<_Tp>::operator ++(int)
    {
    SparseMatIterator_<_Tp> it = *this;
    SparseMatConstIterator::operator ++();
    return it;
    }

    }

    #endif
    #endif

  • 相关阅读:
    SpringMVC的拦截器
    artDialog双击会关闭对话框的修改
    artDialog弹出框使用
    解决从本地文件系统上传到HDFS时的权限问题
    JAVA中写时复制(Copy-On-Write)Map实现
    数据结构--堆的实现(下)
    二叉树的创建算法
    Lamport Logical Clock 学习
    动态规划的思想来求解字符串分割问题
    数据结构--图 的JAVA实现(下)
  • 原文地址:https://www.cnblogs.com/2008nmj/p/11640862.html
Copyright © 2020-2023  润新知