• 学习OpenCV——粒子滤波(网上两篇文章总结)


    粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数。其再非线性、非高斯系统中具有优良的特性。opencv给出了一个实现,但是没有给出范例,学习过程中发现网络上也找不到。learning opencv一书中有介绍,但距离直接使用还是有些距离。在经过一番坎坷后,终于可以用了,希望对你有帮助。

     本文中给出的例子跟 我的另一篇博文是同一个应用例子,都是对二维坐标进行平滑、预测

    使用方法:


    1.创建并初始化

    const int stateNum=4;//状态数
     const int measureNum=2;//测量变量数
     const int sampleNum=2000;//粒子数

     CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);

    在不影响性能的情况下,粒子数量越大,系统表现的越稳定

    其他初始化内容请参考learning opencv


    2.预测
    3.更新例子可信度,也就是权重。本例中更新方法与learning opencv中有所不同,想看代码 
    4.更新CvConDensation

    代码:

    [cpp] view plain copy
     
     print?
    1. #include <cv.h>  
    2. #include <cxcore.h>  
    3. #include <highgui.h>  
    4. #include <cvaux.h>  
    5.   
    6. #include <cmath>  
    7. #include <vector>  
    8. #include <iostream>  
    9. using namespace std;  
    10.   
    11. const int winHeight=600;  
    12. const int winWidth=800;  
    13.   
    14.   
    15. CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);  
    16.   
    17. //mouse event callback  
    18. void mouseEvent(int event,int x,int y,int flags,void *param )  
    19. {  
    20.     if (event==CV_EVENT_MOUSEMOVE) {  
    21.         mousePosition=cvPoint(x,y);  
    22.     }  
    23. }  
    24.   
    25. int main (void)  
    26. {  
    27.     //1.condensation setup  
    28.     const int stateNum=4;  
    29.     const int measureNum=2;  
    30.     const int sampleNum=2000;  
    31.   
    32.     CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);  
    33.     CvMat* lowerBound;  
    34.     CvMat* upperBound;  
    35.     lowerBound = cvCreateMat(stateNum, 1, CV_32F);  
    36.     upperBound = cvCreateMat(stateNum, 1, CV_32F);  
    37.     cvmSet(lowerBound,0,0,0.0 );   
    38.     cvmSet(upperBound,0,0,winWidth );  
    39.     cvmSet(lowerBound,1,0,0.0 );   
    40.     cvmSet(upperBound,1,0,winHeight );  
    41.     cvmSet(lowerBound,2,0,0.0 );   
    42.     cvmSet(upperBound,2,0,0.0 );  
    43.     cvmSet(lowerBound,3,0,0.0 );   
    44.     cvmSet(upperBound,3,0,0.0 );  
    45.     float A[stateNum][stateNum] ={  
    46.         1,0,1,0,  
    47.         0,1,0,1,  
    48.         0,0,1,0,  
    49.         0,0,0,1  
    50.     };  
    51.     memcpy(condens->DynamMatr,A,sizeof(A));  
    52.     cvConDensInitSampleSet(condens, lowerBound, upperBound);  
    53.   
    54.     CvRNG rng_state = cvRNG(0xffffffff);  
    55.     for(int i=0; i < sampleNum; i++){  
    56.         condens->flSamples[i][0] = float(cvRandInt( &rng_state ) % winWidth); //width  
    57.         condens->flSamples[i][1] = float(cvRandInt( &rng_state ) % winHeight);//height  
    58.     }  
    59.   
    60.     CvFont font;  
    61.     cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  
    62.   
    63.     char* winName="condensation";  
    64.     cvNamedWindow(winName);  
    65.     cvSetMouseCallback(winName,mouseEvent);  
    66.     IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);  
    67.     bool isPredictOnly=false;//trigger for prediction only,press SPACEBAR  
    68.     while (1){  
    69.         //2.condensation prediction  
    70.         CvPoint predict_pt=cvPoint((int)condens->State[0],(int)condens->State[1]);  
    71.   
    72.         float variance[measureNum]={0};       
    73.         //get variance/standard deviation of each state  
    74.         for (int i=0;i<measureNum;i++) {  
    75.             //sum  
    76.             float sumState=0;  
    77.             for (int j=0;j<condens->SamplesNum;j++) {  
    78.                 sumState+=condens->flSamples[i][j];  
    79.             }  
    80.             //average  
    81.             sumState/=sampleNum;  
    82.             //variance  
    83.             for (int j=0;j<condens->SamplesNum;j++) {  
    84.                 variance[i]+=(condens->flSamples[i][j]-sumState)*  
    85.                     (condens->flSamples[i][j]-sumState);  
    86.             }  
    87.             variance[i]/=sampleNum-1;  
    88.         }  
    89.         //3.update particals confidence  
    90.         CvPoint pt;  
    91.         if (isPredictOnly) {  
    92.             pt=predict_pt;  
    93.         }else{  
    94.             pt=mousePosition;  
    95.         }  
    96.         for (int i=0;i<condens->SamplesNum;i++) {  
    97.             float probX=(float)exp(-1*(pt.x-condens->flSamples[i][0])  
    98.                 *(pt.x-condens->flSamples[i][0])/(2*variance[0]));  
    99.             float probY=(float)exp(-1*(pt.y-condens->flSamples[i][1])  
    100.                 *(pt.y-condens->flSamples[i][1])/(2*variance[1]));  
    101.             condens->flConfidence[i]=probX*probY;  
    102.         }  
    103.         //4.update condensation  
    104.         cvConDensUpdateByTime(condens);  
    105.           
    106.         //draw   
    107.         cvSet(img,cvScalar(255,255,255,0));  
    108.         cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green  
    109.         char buf[256];  
    110.         sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
    111.         cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));  
    112.         if (!isPredictOnly) {  
    113.             cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red  
    114.             sprintf_s(buf,256,"real position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
    115.             cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));  
    116.         }  
    117.           
    118.         cvShowImage(winName, img);  
    119.         int key=cvWaitKey(30);  
    120.         if (key==27){//esc     
    121.             break;  
    122.         }else if (key==' ') {//trigger for prediction  
    123.             //isPredict=!isPredict;  
    124.             if (isPredictOnly) {  
    125.                 isPredictOnly=false;  
    126.             }else{  
    127.                 isPredictOnly=true;  
    128.             }  
    129.         }  
    130.     }        
    131.   
    132.     cvReleaseImage(&img);  
    133.     cvReleaseConDensation(&condens);  
    134.     return 0;  
    135. }  

    kalman filter 视频演示:

    演示中粒子数分别为100,200,2000

    请仔细观测效果

    http://v.youku.com/v_show/id_XMjU4MzE0ODgw.html

    demo snapshot:

    //上面这一篇是演示点跟踪,原文http://blog.csdn.net/onezeros/article/details/6319180

    //这一篇是上交的一哥们演示的窗口跟踪!(有code)
    http://www.cnblogs.com/yangyangcv/archive/2010/05/23/1742263.html
     
    from: http://blog.csdn.net/yangtrees/article/details/7616483
  • 相关阅读:
    第一次软工作业
    项目复审&事后诸葛亮分析
    测试与发布
    团队项目scrum冲刺日志合集
    团队作业3
    团队作业2
    团队作业1-团队展示&选题
    结对项目, 四则运算
    个人项目作业
    自我介绍+软工五问
  • 原文地址:https://www.cnblogs.com/GarfieldEr007/p/5401886.html
Copyright © 2020-2023  润新知