• [模板]LCS&LIS


    LIS与LCS是经典的动态规划问题.

    LIS

    AT2827 LIS

    假设有序列s:

    dp[i]表示以s[i]为结尾的上升子序列的最大长度.O(N2),TLE

    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    
    int n, s[100010], dp[100010], ans;
    
    int main() {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", s + i);
    
        for (int i = 1; i <= n; i++) {
            dp[i] = 1;
            for (int j = 1; j < i; j++)
                if (s[j] < s[i]) dp[i] = max(dp[j] + 1, dp[i]);
            ans = max(ans, dp[i]);
        }
    
        printf("%d
    ", ans);
    
        return 0;
    }
    AT2827 暴力

    dp[i]表示长度为i的上升子序列末尾元素的最小值.O(NlogN)

    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    
    int n, s[100010], dp[100010], len = 1;
    
    int main() {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", s + i);
            dp[i] = 0x7fffffff;
        }
        dp[1] = s[1];
    
        for (int i = 2; i <= n; i++)
            if (s[i] > dp[len])
                dp[++len] = s[i];
            else {  
                // 这里当然也可以用upper_bound:
                // int x = upper_bound(dp + 1, dp + len, s[i]) - dp;
                // dp[x] = min(s[i], dp[i]);
                int l = 0, r = len;
                while (l < r) {
                    int mid = l + r >> 1;
                    if (dp[mid] > s[i])
                        r = mid;
                    else
                        l = mid + 1;
                }
                dp[l] = min(s[i], dp[l]);
            }
    
        printf("%d
    ", len);
    
        return 0;
    }
    
    AT2827 二分
    AT2827 二分

    LCS

    AcWing最长公共子序列 弱数据,序列为字母

    dp[i][j]表示字符串A的i长度前缀与字符串B的j长度前缀的最长公共子序列.

    #include <algorithm>
    #include <iostream>
    using namespace std;
    
    int dp[1001][1001];
    char a1[2001], a2[2001];
    int n, m;
    
    int main() {
        cin >> n >> m;
        for (int i = 1; i <= n; i++) cin >> a1[i];
        for (int i = 1; i <= m; i++) cin >> a2[i];
    
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= m; j++) {
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                if (a1[i] == a2[j]) dp[i][j] = dp[i - 1][j - 1] + 1;
            }
    
        cout << dp[n][m];
    }
    暴力 LCS

    P1439 【模板】最长公共子序列 强数据,序列为全排列.

    LCS的O(NlogN)求解依赖于LIS方法.

    https://www.luogu.com.cn/blog/blue/solution-p1439

    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    
    int n, dp[100010], s1[100010], s2[100010], ans = 1;
    int rk[100010];
    
    int main() {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", s1 + i);
            rk[s1[i]] = i;
            dp[i] = 0x7FFFFFFF;
        }
        for (int i = 1; i <= n; i++) scanf("%d", s2 + i);
        dp[1] = rk[s2[1]];
    
        for (int i = 2; i <= n; i++)
            if (rk[s2[i]] > dp[ans])
                dp[++ans] = rk[s2[i]];
            else {
                int x = upper_bound(dp + 1, dp + ans, rk[s2[i]]) - dp;
                dp[x] = min(rk[s2[i]], dp[i]);
                // int l = 0, r = ans;
                // while (l < r) {
                //     int mid = l + r >> 1;
                //     if (dp[mid] > rk[s2[i]])
                //         r = mid;
                //     else
                //         l = mid + 1;
                // }
                // dp[l] = min(rk[s2[i]], dp[l]);
            }
    
        printf("%d
    ", ans);
    
        return 0;
    }
    P1439 二分
  • 相关阅读:
    HDU-5534-Partial Tree
    Dire Wolf HDU
    HDU 5119 Happy Matt Friends (14北京区域赛 类背包dp)
    4 Values whose Sum is 0 POJ
    Fliptile POJ
    Face The Right Way POJ
    【Selenium学习】解决chromedriver.exe' executable needs to be in PATH
    【Jenkins学习】修改jenkins显示为中文语言
    【Jenkins学习】Jenkins 批量删除历史构建
    【Tomcat学习】tomcat 日志详解
  • 原文地址:https://www.cnblogs.com/Gaomez/p/14075531.html
Copyright © 2020-2023  润新知