• hdu 5012 Dice


    Problem Description
    There are 2 special dices on the table. On each face of the dice, a distinct number was written. Consider a1.a2,a3,a4,a5,a6 to be numbers written on top face, bottom face, left face, right face, front face and back face of dice A. Similarly, consider b1.b2,b3,b4,b5,b6 to be numbers on specific faces of dice B. It’s guaranteed that all numbers written on dices are integers no smaller than 1 and no more than 6 while ai ≠ aj and bi ≠ bj for all i ≠ j. Specially, sum of numbers on opposite faces may not be 7.
    At the beginning, the two dices may face different(which means there exist some i, ai ≠ bi). Ddy wants to make the two dices look the same from all directions(which means for all i, ai = bi) only by the following four rotation operations.(Please read the picture for more information)
    Now Ddy wants to calculate the minimal steps that he has to take to achieve his goal.
     
    Input
    There are multiple test cases. Please process till EOF. 
    For each case, the first line consists of six integers a1,a2,a3,a4,a5,a6, representing the numbers on dice A. 
    The second line consists of six integers b1,b2,b3,b4,b5,b6, representing the numbers on dice B.
     
    Output
    For each test case, print a line with a number representing the answer. If there’s no way to make two dices exactly the same, output -1.
     
    Sample Input
    1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 5 6 4 3 1 2 3 4 5 6 1 4 2 5 3 6
     
    Sample Output
    0 3 -1
     
    Source
     

    题意:两个骰子,要把第一个骰子转到和第二个一样,有4种转法,求最少的次数

    直接bfs,不过我用G++提交超时,用C++提交可以过,可能是使用了queue的原因。。。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<stdlib.h>
     6 #include<algorithm>
     7 #include<queue>
     8 #include<map>
     9 using namespace std;
    10 struct Node
    11 {
    12     int a[7];
    13     int t;
    14 }st,ed;
    15 int vis[10][10][10][10][10][10];
    16 void bfs()
    17 {
    18     
    19     queue<Node>q;
    20     q.push(st);
    21     
    22     vis[st.a[0]][st.a[1]][st.a[2]][st.a[3]][st.a[4]][st.a[5]]=1;
    23     Node t1,t2;
    24     Node tmp;
    25     while(!q.empty())
    26     {
    27         t1=q.front();
    28         q.pop();
    29         if(t1.a[0]==ed.a[0] && t1.a[1]==ed.a[1]&& t1.a[2]==ed.a[2]&& t1.a[3]==ed.a[3]&& t1.a[4]==ed.a[4] && t1.a[5]==ed.a[5])
    30         {
    31             printf("%d
    ",t1.t);
    32             return;
    33         }
    34         
    35         t2=t1;
    36         t2.a[0]=t1.a[3];
    37         t2.a[1]=t1.a[2];
    38         t2.a[2]=t1.a[0];
    39         t2.a[3]=t1.a[1];
    40         if(vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]==0)
    41         {
    42             vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]=1;
    43             t2.t=t1.t+1;
    44             q.push(t2);
    45         }
    46         
    47         
    48         t2=t1;
    49         t2.a[0]=t1.a[2];
    50         t2.a[1]=t1.a[3];
    51         t2.a[2]=t1.a[1];
    52         t2.a[3]=t1.a[0];
    53         if(vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]==0)
    54         {
    55             vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]=1;
    56             t2.t=t1.t+1;
    57             q.push(t2);
    58         }
    59         
    60         t2=t1;
    61         t2.a[0]=t1.a[5];
    62         t2.a[1]=t1.a[4];
    63         t2.a[4]=t1.a[0];
    64         t2.a[5]=t1.a[1];
    65         if(vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]==0)
    66         {
    67             vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]=1;
    68             t2.t=t1.t+1;
    69             q.push(t2);
    70         }
    71         
    72         t2=t1;
    73         t2.a[0]=t1.a[4];
    74         t2.a[1]=t1.a[5];
    75         t2.a[4]=t1.a[1];
    76         t2.a[5]=t1.a[0];
    77         if(vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]==0)
    78         {
    79             vis[t2.a[0]][t2.a[1]][t2.a[2]][t2.a[3]][t2.a[4]][t2.a[5]]=1;
    80             t2.t=t1.t+1;
    81             q.push(t2);
    82         }
    83     }
    84     printf("-1
    ");
    85 }
    86 int main()
    87 {
    88     while(scanf("%d%d%d%d%d%d",&st.a[0],&st.a[1],&st.a[2],&st.a[3],&st.a[4],&st.a[5])==6)
    89     {
    90         scanf("%d%d%d%d%d%d",&ed.a[0],&ed.a[1],&ed.a[2],&ed.a[3],&ed.a[4],&ed.a[5]);
    91         st.t=0;
    92         memset(vis,0,sizeof(vis));
    93         bfs();
    94     }
    95     return 0;
    96 }
    View Code
  • 相关阅读:
    72. Edit Distance
    电脑常识
    java try·····catch·····异常处理学习
    java链接sqlserver数据库
    HTTP Status 500
    初识NDA
    Sublime Text_v2.02包含中文包以及使用方法
    ol 与ul 的区别
    word-break: break-all word-break:keep-all word-wrap: break-word三者的区别
    用deamon打开ISO文件,提示命令行错误!!
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4743976.html
Copyright © 2020-2023  润新知