• 【bzoj3510】首都 LCT维护子树信息(+启发式合并)


    题目描述

    在X星球上有N个国家,每个国家占据着X星球的一座城市。由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的。 
    X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失,而B国的国土也将归A国管辖。A国国王为了加强统治,会在A国和B国之间修建一条公路,即选择原A国的某个城市和B国某个城市,修建一条连接这两座城市的公路。 
    同样为了便于统治自己的国家,国家的首都会选在某个使得其他城市到它距离之和最小的城市,这里的距离是指需要经过公路的条数,如果有多个这样的城市,编号最小的将成为首都。 
    现在告诉你发生在X星球的战事,需要你处理一些关于国家首都的信息,具体地,有如下3种信息需要处理: 
    1、A x y:表示某两个国家发生战乱,战胜国选择了x城市和y城市,在它们之间修建公路(保证其中城市一个在战胜国另一个在战败国)。 
    2、Q x:询问当前编号为x的城市所在国家的首都。 
    3、Xor:询问当前所有国家首都编号的异或和。 

    输入

    第一行是整数N,M,表示城市数和需要处理的信息数。 
    接下来每行是一个信息,格式如题目描述(A、Q、Xor中的某一种)。 

    输出

    输出包含若干行,为处理Q和Xor信息的结果。 

    样例输入

    10 10
    Xor
    Q 1
    A 10 1
    A 1 4
    Q 4
    Q 10
    A 7 6
    Xor
    Q 7
    Xor

    样例输出

    11
    1
    1
    1
    2
    6
    2


    题解

    LCT维护子树信息(+启发式合并)

    这道题也真是强啊,分析了一会码了一会,结果却因为一个傻x错误坑了我一个多小时~

    首先,在link时,要把点数少的连接到点数多的上(这其实不应该叫做启发式合并吧)

    这样有什么好处?它有两个重要的性质:

    1.合并后的重心一定在点数多的树之内,且在连接点到原重心的链上(因为如果在点数少的树之内,重心最后一段的移动路径一定对答案的贡献恒为负,一定不是最优解;而偏移方向不为到连接点方向的话对答案贡献也一定为负)

    2.合并后的重心与原重心距离一定不超过点数少的树的点数(假设一个一个插入,偏移距离一定不超过1)

    这就可以看出这样做的优势:性质1限定了重心移动的方向,性质2限定了重心移动的距离。

    我们考虑:重心发生改变,把它移动的路径分为每次一条边的段,那么每一段对于答案的贡献一定是递减的,直到某一段对答案贡献为负则停止。

    那么我们就可以模拟这个过程,将重心设为树根,每次把重心可能的移动路径拿出来,一个一个判断并处理。

    嘴上说真简单

    实际上,要动态维护子树大小,需要使用LCT维护子树信息。而在LCT中取出重心的移动路径并不是特别容易,需要求出Splay Tree的中序遍历,就要dfs整棵Splay Tree,并在超过范围时停止。

    由于重心是固定的,因此将x合并到y上时不能makeroot(y),只能access(y),splay(y)

    更复杂的问题是题目不是使用spj,而是强制要求有多个重心时需要选择编号较小的。所以还应该判断编号的影响。

    最重要的是,findroot和dfs时都需要pushdown!一开始我在findroot时想起来了,结果到dfs时又忘了,因为这个sb错误zz了一个小时真是气。

    代码不是很美观...具体实现可以参考 bzoj4530

    时间复杂度依然是$O(nlog^2n)$

    #include <cstdio>
    #include <algorithm>
    #define N 100010
    using namespace std;
    int fa[N] , c[2][N] , rev[N] , si[N] , sum[N] , sta[N] , top , s;
    char str[5];
    void pushup(int x)
    {
    	sum[x] = sum[c[0][x]] + sum[c[1][x]] + si[x] + 1;
    }
    void pushdown(int x)
    {
    	if(rev[x])
    	{
    		int l = c[0][x] , r = c[1][x];
    		swap(c[0][l] , c[1][l]) , swap(c[0][r] , c[1][r]);
    		rev[l] ^= 1 , rev[r] ^= 1 , rev[x] = 0;
    	}
    }
    bool isroot(int x)
    {
    	return c[0][fa[x]] != x && c[1][fa[x]] != x;
    }
    void update(int x)
    {
    	if(!isroot(x)) update(fa[x]);
    	pushdown(x);
    }
    void rotate(int x)
    {
    	int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
    	if(!isroot(y)) c[c[1][z] == y][z] = x;
    	fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
    	pushup(y) , pushup(x);
    }
    void splay(int x)
    {
    	update(x);
    	while(!isroot(x))
    	{
    		int y = fa[x] , z = fa[y];
    		if(!isroot(y))
    		{
    			if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
    			else rotate(y);
    		}
    		rotate(x);
    	}
    }
    void access(int x)
    {
    	int t = 0;
    	while(x) splay(x) , si[x] += sum[c[1][x]] - sum[t] , c[1][x] = t , pushup(x) , t = x , x = fa[x];
    }
    int find(int x)
    {
    	access(x) , splay(x);
    	while(c[0][x]) pushdown(x) , x = c[0][x];
    	return x;
    }
    void makeroot(int x)
    {
    	access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] = 1;
    }
    void split(int x , int y)
    {
    	makeroot(x) , access(y) , splay(y);
    }
    void link(int x , int y)
    {
    	split(x , y) , fa[x] = y , si[y] += sum[x];
    }
    void dfs(int x)
    {
    	if(!x) return;
    	pushdown(x);
    	dfs(c[0][x]);
    	if(top > s) return;
    	sta[++top] = x;
    	if(top > s) return;
    	dfs(c[1][x]);
    }
    int main()
    {
    	int n , m , i , ret = 0 , x , y , t , tx , ty , r , ts;
    	scanf("%d%d" , &n , &m);
    	for(i = 1 ; i <= n ; i ++ ) sum[i] = 1 , ret ^= i;
    	while(m -- )
    	{
    		scanf("%s" , str);
    		if(str[0] == 'A')
    		{
    			scanf("%d%d" , &x , &y) , tx = find(x) , ty = find(y) , ret ^= tx ^ ty , splay(tx) , splay(ty);
    			if(sum[tx] > sum[ty] || (sum[tx] == sum[ty] && x < y)) swap(x , y) , swap(tx , ty);
    			s = sum[tx] , ts = sum[tx] + sum[ty] , link(x , y) , access(x) , splay(ty);
    			top = 0 , dfs(ty) , r = ty;
    			for(i = 1 ; i <= top ; i ++ )
    			{
    				splay(sta[i]) , t = si[sta[i]] + 1 + sum[c[1][sta[i]]];
    				if(ts - t < t || (ts - t == t && sta[i] <= r)) r = sta[i];
    				else break;
    			}
    			makeroot(r) , ret ^= r;
    		}
    		else if(str[0] == 'Q') scanf("%d" , &x) , printf("%d
    " , find(x));
    		else printf("%d
    " , ret);
    	}
    	return 0;
    }
    

     

  • 相关阅读:
    R语言大小写字母转换
    SparkR(R on Spark)编程指南 含 dataframe操作
    SparkR(R on Spark)编程指南 含 dataframe操作
    R-table和tapply函数
    r table
    多变量频率统计——r
    R语言-查看加载包、卸除加载包及安装包与卸载包
    flask 电子邮件进阶实践-用模板发送163邮件 --
    flask 电子邮件Flask-Mail --
    数据库进阶实践-事件监听 --
  • 原文地址:https://www.cnblogs.com/GXZlegend/p/7061580.html
Copyright © 2020-2023  润新知