• hdu 2588 GCD (欧拉函数)


    GCD

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 890    Accepted Submission(s): 396


    Problem Description
    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
    (a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
    Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
     
    Input
    The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
     
    Output
    For each test case,output the answer on a single line.
     
    Sample Input
    3
    1 1
    10 2
    10000 72
     
    Sample Output
    1
    6
    260
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1695 2582 4002 2581 2580 
     
     1 //15MS    208K    784 B    G++
     2 /*
     3  
     4    题意:
     5        求[1,n]内与n公约数大于m的数的个数。
     6        
     7    思路:
     8        想了挺长时间,没什么思路。
     9        后来得知结果为:
    10            对于所有大于m的n的公约数k,求出所有n/k的欧拉数的和即为题解。
    11        一个数m的欧拉数即为小于m且与m互质的数的和。
    12        至于怎么得出的自己推一下吧。 
    13 
    14 */
    15 #include<stdio.h>
    16 int euler(int n)
    17 {
    18     int ret=1;
    19     for(int i=2;i*i<=n;i++)
    20         if(n%i==0){
    21             n/=i;ret*=i-1;
    22             while(n%i==0){
    23                 n/=i;ret*=i;
    24             }
    25         }
    26     if(n>1) ret*=(n-1);
    27     return ret;
    28 }
    29 int cul(int n,int m)
    30 {
    31     int sum=0;
    32     for(int i=1;i*i<=n;i++){
    33         if(n%i==0){ 
    34             if(n/i>=m && i*i!=n)
    35                 sum+=euler(i);
    36             if(i>=m)
    37                 sum+=euler(n/i);
    38         } 
    39     }
    40     return sum;
    41 }
    42 int main(void)
    43 {
    44     int t,n,m;
    45     scanf("%d",&t);
    46     while(t--)
    47     {
    48         scanf("%d%d",&n,&m);
    49         printf("%d
    ",cul(n,m));
    50     }
    51     return 0;
    52 } 
  • 相关阅读:
    C#枚举(一)使用总结以及扩展类分享
    .NET使用DinkToPdf将HTML转成PDF
    .NET使用MailKit进行邮件处理
    socket+django
    mysql 修改编码格式
    django中Model表的反向查询
    浅谈 session 会话的原理
    浅谈 django Models中的跨表
    django Models 常用的字段和参数
    encoding/xml
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3654062.html
Copyright © 2020-2023  润新知