• Codeforces 888E:Maximum Subsequence(枚举,二分)


    You are given an array a consisting of n integers, and additionally an integer m. You have to choose some sequence of indices (b_1, b_2, ..., b_k (1 ≤ b_1 < b_2 < ... < b_k ≤ n)) in such a way that the value of (sum^{k}_{i=1}a_{b_i}) is maximized. Chosen sequence can be empty.

    Print the maximum possible value of (sum^{k}_{i=1}a_{b_i}).

    Input

    The first line contains two integers (n) and (m (1 ≤ n ≤ 35, 1 ≤ m ≤ 10^9)).

    The second line contains (n) integers (a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9)).

    Output

    Print the maximum possible value of (sum^{k}_{i=1}a_{b_i}).

    Examples

    Input

    4 4

    5 2 4 1

    Output

    3

    Input

    3 20

    199 41 299

    Output

    19

    Note

    In the first example you can choose a sequence (b = {1, 2}), so the sum (sum^{k}_{i=1}a_{b_i}) is equal to (7) (and that's (3) after taking it modulo (4)).

    In the second example you can choose a sequence (b = {3}).

    题意

    给出(n)个数,从这(n)个数中选出几个数(可以不选),使得这些数的和对(m)取余后的值最大

    思路

    首先有一种特别暴力的方法:枚举出所有的状态后,找出对(m)取模后的最大值,时间复杂度(O(2^n)),这里(n=35),肯定是不行的

    我们可以将这些数分成两段,分别枚举出这两段的所有状态,对左右两段排序,去重。然后从左半段中选出一个值(value),因为是对(m)取模后的最大值,所以最大的结果等于(m-1),在右半段利用二分查找大于(m-1-value)的位置(place),右半段(place-1)位置的数就是符合要求的数,相加取最大值即可

    时间复杂度:(O(2^{left lceil dfrac {n}{2} ight ceil}+n))

    代码

    #include <bits/stdc++.h>
    #define ll long long
    #define ull unsigned long long
    #define ms(a,b) memset(a,b,sizeof(a))
    const int inf=0x3f3f3f3f;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int maxn=1e6+10;
    const int mod=1e9+7;
    const int maxm=1e3+10;
    using namespace std;
    int a[maxn];
    int Left[maxn];
    int Right[maxn];
    int cntl,cntr;
    int n,m;
    int main(int argc, char const *argv[])
    {
        #ifndef ONLINE_JUDGE
            freopen("in.txt", "r", stdin);
            freopen("out.txt", "w", stdout);
            srand((unsigned int)time(NULL));
        #endif
        ios::sync_with_stdio(false);
        cin.tie(0);
        cin>>n>>m;
        for(int i=0;i<n;i++)
            cin>>a[i],a[i]%=m;
        int res=0;
        int l,r;
        l=r=n/2;
        for(int i=0;i<(1<<r);i++)
        {
            res=0;
            for(int j=0;j<r;j++)
                if(i>>j&1)
                    res+=a[j],res%=m;
            Left[cntl++]=res;
        }
        res=0;
        r=n;
        int num=r-l+1;
        for(int i=0;i<(1<<num);i++)
        {
            res=0;
            for(int j=0;j<num;j++)
                if(i>>j&1)
                    res+=a[l+j],res%=m;
            Right[cntr++]=res;
        }
        Left[cntl++]=0;
        Right[cntr++]=0;
        sort(Left,Left+cntl);
        sort(Right,Right+cntr);
        cntl=unique(Left,Left+cntl)-Left;
        cntr=unique(Right,Right+cntr)-Right;
        int ans=0;
        for(int i=0;i<cntl;i++)
        {
            int res=m-Left[i]-1;
            int pos=upper_bound(Right,Right+cntr,res)-Right;
            int num=Right[pos-1];
            ans=max(ans%m,(num+Left[i])%m);
        }
        cout<<ans<<endl;
        #ifndef ONLINE_JUDGE
            cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
        #endif
        return 0;
    }
    
  • 相关阅读:
    [LeetCode] 1131. Maximum of Absolute Value Expression 绝对值表达式的最大值
    [LeetCode] 1130. Minimum Cost Tree From Leaf Values 叶值的最小代价生成树
    [LeetCode] 1129. Shortest Path with Alternating Colors 颜色交替的最短路径
    [LeetCode] 1128. Number of Equivalent Domino Pairs 等价多米诺骨牌对的数量
    [LeetCode] 1125. Smallest Sufficient Team 最小的必要团队
    [LeetCode] 1124. Longest Well-Performing Interval 表现良好的最长时间段
    [LeetCode] 1122. Relative Sort Array 数组的相对排序
    Gitalk 自动初始化评论
    [LeetCode] 1111. Maximum Nesting Depth of Two Valid Parentheses Strings 有效括号的嵌套深度
    [LeetCode] 1110. Delete Nodes And Return Forest 删点成林
  • 原文地址:https://www.cnblogs.com/Friends-A/p/11569017.html
Copyright © 2020-2023  润新知