• Graph_Master(连通分量_E_Hungry+Tarjan)


    hdu_4685

    终于来写了这题的解题报告,没有在昨天A出来有点遗憾,不得不说数组开大开小真的是阻碍人类进步的一大天坑。

    题目大意:给出n个王子,m个公主,只要王子喜欢,公主就得嫁(这个王子当得好霸道),求在最大匹配数的情况下,每个王子能和哪些公主匹配。

    题解:这题做过了弱化版的(poj_1904),在之前的博客也有提及。解法就是跑完hungey之后,为每个单身的王子都虚拟一个公主,并且每个王子都喜欢这个公主;为每个单身的公主都虚拟一个王子,并且这个王子喜欢每个公主。然后公主连反向边给王子,接下来就是Tarjan缩点,把一个强连通分量的公主王子输出即可,注意判断编号的合理性(虚拟的就不可输出)。

    细节:因为n,m<=500,所以各种虚拟最多也就是4*500=2000个点,于是乎,我边集数组又开小了,只开了20w,最后开到100w过的,不得不说边数还是真的多,也确实2000个点20w的边数是少了。


    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #define clr(a,b) memset((a),(b),sizeof(a))
    using namespace std;
    
    const int NN = 5005;
    const int M = 1e6 + 16;
    struct Edge
    {
    	int nxt, u, v;
    };
    Edge edge[M];
    
    int ecnt, head[NN];
    int low[NN], dfn[NN], sta[NN], col[NN];
    int top, sum, dep;
    bool vis[NN], _vis[NN];
    int N;
    int n, m;
    
    int fr1[NN], fr2[NN];
    int ans[NN];
    //fr1 princesss		fr2 prince
    
    void init()
    {
    	dep = top = sum = ecnt = 0;
    	clr(head,-1);
    	clr(vis,0);
    	clr(col,0);
    	clr(dfn,0);
    	clr(low,0);
    	clr(sta,0);
    }
    
    void _add( int a, int b )
    {
    	edge[ecnt].u = a;
    	edge[ecnt].v = b;
    	edge[ecnt].nxt = head[a];
    	head[a] = ecnt ++;
    }
    
    void tarjan( int u )
    {
    	sta[++top] = u;
    	vis[u] = 1;
    	low[u] = dfn[u] = ++dep;
    	
    	for ( int i = head[u]; i+1; i = edge[i].nxt )
    	{
    		int v = edge[i].v;
    		if ( !dfn[v] )
    		{
    			tarjan(v);
    			low[u] = min( low[u], low[v] );
    		}
    		else if ( vis[v] )
    			low[u] = min( low[u], low[v] );
    	}
    	
    	if ( low[u] == dfn[u] )
    	{
    		col[u] = ++sum;
    		vis[u] = 0;
    		while ( sta[top] != u )
    		{
    			col[sta[top]] = sum;
    			vis[sta[top--]] = 0;
    		}
    		top --;
    	}
    }
    
    bool find( int u )
    {
    	for ( int i = head[u]; i+1; i = edge[i].nxt )
    	{
    		int v = edge[i].v;
    		if ( !_vis[v] )
    		{
    			_vis[v] = 1;
    			if ( fr1[v] == -1 || find(fr1[v]) )
    			{
    				fr1[v] = u;
    				fr2[u] = v;
    				return 1;
    			}
    		}
    	}
    	return 0;
    }
    
    void hungry()
    {
    	clr(fr1,-1);
    	clr(fr2,-1);
    	for ( int i = 1; i <= n; i ++ )
    	{
    		clr(_vis,0);
    		find(i);
    	}
    }
    
    int main()
    {
    	int T;
    	scanf("%d", &T);
    	for ( int cas = 1; cas <= T; cas ++ )
    	{
    		init();
    		scanf("%d%d", &n, &m);
    		N = max( n, m );
    		
    		for ( int i = 1; i <= n; i ++ )
    		{
    			int p, q;
    			scanf("%d", &p);
    			while ( p -- )
    			{
    				scanf("%d", &q);
    				_add(i,q+N);
    			}
    		}
    		
    		hungry();
    		
    		int peo = 2*N;
    		int tmp = 2*N;
    		
    		//fake princess
    		for ( int i = 1; i <= n; i ++ )
    		{
    			if ( fr2[i] == -1 )
    			{
    				peo ++;
    				for ( int j = 1; j <= N; j ++ )
    					_add( j, peo );
    				fr2[i] = peo;
    				fr1[peo] = i;
    			}
    		}
    		//fake prince
    		for ( int i = N+1; i <= tmp; i ++ )
    		{
    			if ( fr1[i] == -1 )
    			{
    				peo ++;
    				for ( int j = N+1; j <= tmp; j ++ )
    					_add( peo, j );
    				fr1[i] = peo;
    				fr2[peo] = i;
    			}
    		}
    		for ( int i = 1; i <= peo; i ++ )
    			if ( fr2[i] != -1 )
    				_add( fr2[i], i );
    		for ( int i = 1; i <= n; i ++ )
    			if ( !dfn[i] )
    				tarjan(i);
    			
    		printf("Case #%d:
    ", cas);
    		for ( int i = 1; i <= n; i ++ )
    		{
    			int cnt = 0;
    			for ( int j = head[i]; j+1; j = edge[j].nxt )
    			{
    				int v = edge[j].v;
    				if ( col[i] == col[v] )
    				{
    					if ( v - N <= m )
    						ans[cnt++] = v - N;
    				}
    			}
    			
    			sort(ans,ans+cnt);
    			printf("%d", cnt);
    			for ( int k = 0; k < cnt; k ++ )
    				printf(" %d", ans[k]);
    			printf("
    ");
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    tensorflow1.0 矩阵相乘
    tensorflow1.0 变量加法
    python 给字典按值排序,同样适合于其他
    pytorch 孪生神经网络DNN
    python 利用numpy同时打乱列表的顺序,同时打乱数据和标签的顺序
    python os模块获取指定目录下的文件列表
    创建自定义ssl证书用于https
    使用Maven命令行下载依赖库
    JAVA入门各种API参考
    在centos 6.9 x64下安装code::blocks步骤
  • 原文地址:https://www.cnblogs.com/FormerAutumn/p/9627114.html
Copyright © 2020-2023  润新知