""" Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly. """ #tensorboard --logdir="./" import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer with tf.name_scope("layer"): with tf.name_scope("weights"): Weights = tf.Variable(tf.random_normal([in_size, out_size]),name="W") with tf.name_scope("biases"): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) with tf.name_scope("Wx_plus_b"): Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # Make up some real data x_data = np.linspace(-1 ,1 ,300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network with tf.name_scope("inputs"): xs = tf.placeholder(tf.float32, [None, 1],name="x_input") ys = tf.placeholder(tf.float32, [None, 1],name="y_input") # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.tanh) # add output layer prediction = add_layer(l1, 10, 1, activation_function=None) # the error between prediciton and real data with tf.name_scope("loss"): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) with tf.name_scope("train"): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step init = tf.initialize_all_variables() sess = tf.Session() writer = tf.summary.FileWriter("./",sess.graph) sess.run(init) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data,y_data) plt.ion() plt.show() for i in range(1000): # training sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # to see the step improvement print(sess.run(loss, feed_dict={xs: x_data, ys: y_data})) try: ax.lines.remove(lines[0]) except Exception: prediction_value = sess.run(prediction,feed_dict={xs: x_data, ys: y_data}) lines = ax.plot(x_data,prediction_value,"r-",lw = 5) plt.pause(0.1)