• tensorflow1.0 构建神经网络做图片分类


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    def add_layer(inputs,in_size,out_size,activation_function=None):
        Weight = tf.Variable(tf.random_normal([in_size,out_size]))
        biases = tf.Variable(tf.zeros([1,out_size])+0.1)
        Wx_plus_b = tf.matmul(inputs,Weight)+biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    def compute_accuracy(v_xs,v_ys):
        global prediction
        y_pre = sess.run(prediction,feed_dict={xs:v_xs})
        correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
        result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
        return result
    
    xs = tf.placeholder(tf.float32,[None,784])  #28*28
    ys = tf.placeholder(tf.float32,[None,10])
    
    l1 = add_layer(xs,784,128,activation_function=tf.nn.tanh)
    prediction = add_layer(l1,128,10,activation_function=tf.nn.softmax)
    
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    sess = tf.Session()
    sess.run(tf.initialize_all_variables())
    
    
    for i in range(3000):
        batch_xs,batch_ys = mnist.train.next_batch(100)
        sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
        if i %50 ==0:
            print(compute_accuracy(mnist.test.images,mnist.test.labels))
    

      

    多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。
  • 相关阅读:
    DBCP连接池
    获取自动生成的主键
    将图片存储到数据库中
    java.nio.file.AccessDeniedException
    mysql8 :客户端连接caching-sha2-password问题
    理解 Android Build 系统(转载)
    C build error fix
    linux硬链接和软链接的区别
    du -sh
    linux proc maps文件分析
  • 原文地址:https://www.cnblogs.com/LiuXinyu12378/p/12495380.html
Copyright © 2020-2023  润新知