• 无向图的 DFS 和 BFS实现 (以邻接表存储的图)


                      

      1 #include <iostream>
      2 #include <queue>
      3 
      4 using namespace std;
      5 
      6 #define MaxVertexNum 10
      7 typedef int Vertex;
      8 typedef int WeightType;
      9 typedef char DataType;
     10 
     11 bool Visited[MaxVertexNum] = { false };
     12 
     13 //边的定义
     14 typedef struct ENode
     15 {
     16     Vertex V1, V2;    //有向边<V1,V2>
     17     WeightType Weight;    //权重
     18 }*Edge;
     19 
     20 //邻接点的定义
     21 typedef struct AdjVNode
     22 {
     23     Vertex AdjV;    //邻接点下标
     24     WeightType Weight;    //边权重
     25     struct AdjVNode *Next;    //指向下一个邻接点的指针
     26 }*PtrToAdjVNode;
     27 
     28 //顶点表头结点的定义
     29 typedef struct VNode
     30 {
     31     /* DataType Data;    //存顶点的数据,很多情况下,顶点无数据,此时Data可以不用出现 */
     32     struct AdjVNode *FirstEdge;    //边表头指针
     33 }AdjList[MaxVertexNum];
     34 
     35 //图结点的定义
     36 typedef struct GNode
     37 {
     38     int Nv;        //顶点数
     39     int Ne;        //边数
     40     AdjList G;  //邻接表表示的图
     41 }*LGraph;
     42 
     43 
     44 LGraph BuildGraph(int vertex_num, int edge_num)
     45 {
     46     LGraph Graph = (LGraph)malloc(sizeof(struct GNode));
     47     Graph->Nv = vertex_num;
     48     Graph->Ne = edge_num;
     49     for (int i = 0; i < Graph->Nv; ++i)
     50         Graph->G[i].FirstEdge = NULL;    //初始化所有表头指针为NULL
     51 
     52     Edge E = (Edge)malloc(sizeof(struct ENode));
     53     for (int i = 0; i < Graph->Ne; ++i)
     54     {
     55         printf("请输入第%d条边的起点和终点:", i+1);
     56         cin >> E->V1 >> E->V2;
     57         E->Weight = 1;
     58 
     59 
     60         //这种插入方法将会使下标大的在前,小的在后,所以遍历的时候下标大的会先遍历
     61         //插入边<V1,V2>
     62         PtrToAdjVNode NewNode1 = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
     63         NewNode1->AdjV = E->V2;
     64         NewNode1->Weight = E->Weight;
     65         NewNode1->Next = Graph->G[E->V1].FirstEdge;
     66         Graph->G[E->V1].FirstEdge = NewNode1;
     67 
     68         //无向图,还要插入边<V2,V1>
     69         PtrToAdjVNode NewNode2 = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
     70         NewNode2->AdjV = E->V1;
     71         NewNode2->Weight = E->Weight;
     72         NewNode2->Next = Graph->G[E->V2].FirstEdge;
     73         Graph->G[E->V2].FirstEdge = NewNode2;
     74     }
     75 
     76     return Graph;
     77 }
     78 
     79 void Visit(LGraph Graph, Vertex V)
     80 {
     81     cout << V << ' ';
     82 }
     83 
     84 void ClearVisited()
     85 {
     86     for (int i = 0; i < MaxVertexNum; ++i)
     87         Visited[i] = false;
     88 }
     89 
     90 void DFS(LGraph Graph, Vertex V)
     91 {
     92     Visit(Graph, V);
     93     Visited[V] = true;
     94 
     95     for (PtrToAdjVNode p = Graph->G[V].FirstEdge; p != NULL; p = p->Next)
     96     {
     97         if (!Visited[p->AdjV])
     98             DFS(Graph, p->AdjV);
     99     }
    100 }
    101 
    102 void BFS(LGraph Graph, Vertex V)
    103 {
    104     Visit(Graph, V);
    105     Visited[V] = true;
    106     queue<Vertex> Q;
    107     Q.push(V);
    108 
    109     while(!Q.empty())
    110     { 
    111         Vertex W = Q.front();
    112         Q.pop();
    113         for (PtrToAdjVNode p = Graph->G[W].FirstEdge; p != NULL; p = p->Next)
    114         {
    115             if (!Visited[p->AdjV])
    116             {
    117                 Visit(Graph, p->AdjV);
    118                 Visited[p->AdjV] = true;
    119                 Q.push(p->AdjV);
    120             }
    121         }
    122     }
    123 }
    124 
    125 int main()
    126 {
    127     int nv, ne;
    128     cout << "请输入图的顶点数与边数:";
    129     cin >> nv >> ne;
    130     LGraph Graph = BuildGraph(nv, ne);
    131     cout << endl;
    132     cout << "请输入遍历起点:";
    133     Vertex V;
    134     cin >> V;
    135     cout << "DFS: ";
    136     DFS(Graph, V);
    137     ClearVisited();
    138     cout <<endl;
    139     cout << "BFS: ";
    140     BFS(Graph, V);
    141 
    142 
    143     return 0;
    144 }

    输出:

     

  • 相关阅读:
    安全事件关联分析方法
    网络安全公开数据集
    2019年汽车网络安全
    基于知识图谱的APT组织追踪治理——实践性比较强
    Hutool中常用的工具类和方法
    阿里云短信服务
    Java8实现List转Map
    centos下安装nodejs
    微信小程序,联系客服
    mysql空闲连接
  • 原文地址:https://www.cnblogs.com/FengZeng666/p/10299606.html
Copyright © 2020-2023  润新知