• Navigation Nightmare POJ


    Navigation Nightmare
    题目链接:virtual judge  poj   
    Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):
               F1 --- (13) ---- F6 --- (9) ----- F3
    
    | |
    (3) |
    | (7)
    F4 --- (20) -------- F2 |
    | |
    (2) F5
    |
    F7

    Being an ASCII diagram, it is not precisely to scale, of course.

    Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path
    (sequence of roads) links every pair of farms.

    FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

    There is a road of length 10 running north from Farm #23 to Farm #17
    There is a road of length 7 running east from Farm #1 to Farm #17
    ...

    As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

    What is the Manhattan distance between farms #1 and #23?

    FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms.
    The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

    When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

    Input

    * Line 1: Two space-separated integers: N and M
    

    * Lines 2..M+1: Each line contains four space-separated entities, F1,
    F2, L, and D that describe a road. F1 and F2 are numbers of
    two farms connected by a road, L is its length, and D is a
    character that is either 'N', 'E', 'S', or 'W' giving the
    direction of the road from F1 to F2.

    * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's
    queries

    * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob
    and contains three space-separated integers: F1, F2, and I. F1
    and F2 are numbers of the two farms in the query and I is the
    index (1 <= I <= M) in the data after which Bob asks the
    query. Data index 1 is on line 2 of the input data, and so on.

    Output

    * Lines 1..K: One integer per line, the response to each of Bob's
    
    queries. Each line should contain either a distance
    measurement or -1, if it is impossible to determine the
    appropriate distance.

    Sample Input

    7 6
    1 6 13 E
    6 3 9 E
    3 5 7 S
    4 1 3 N
    2 4 20 W
    4 7 2 S
    3
    1 6 1
    1 4 3
    2 6 6
    

    Sample Output

    13
    -1
    10
    

    Hint

    At time 1, FJ knows the distance between 1 and 6 is 13.
    At time 3, the distance between 1 and 4 is still unknown.
    At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10.
     
    题意:有n个农场,m条路。一一给出每条道路连接的两个村庄以及距离以及方向(前到后的方向),有k次提问,问两个村庄的曼哈顿距离。提问有一个索引i,表示是在第i次连接后问的。
    思路:很普通的带权并查集,只是需要维护的数据有两个,一个是x方向的距离,一个是y方向的距离。然后是需要离线化操作(学到的新词)。
    代码:
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 using namespace std;
     5 const int N = 4e4+5;
     6 struct link{
     7     int x, y, dis;
     8     char dir;
     9 }l[N];
    10 int f[N], rela[N][2], n, m, k;     //[0]代表横向,[1]代表竖向
    11 
    12 void init();
    13 int find(int x);
    14 void merge(int x, int y, int dis, char dir);
    15 bool check(int x, int y);
    16 
    17 int main()
    18 {
    19     scanf("%d %d", &n, &m);
    20     init();
    21     for (int i=1;i<=m;i++)
    22         scanf("%d %d %d %c", &l[i].x, &l[i].y, &l[i].dis, &l[i].dir);
    23     scanf("%d", &k);
    24     int cnt = 1;
    25     for (int i=1;i<=k;i++)
    26     {
    27         int a, b, num;
    28         scanf("%d%d%d", &a, &b, &num);
    29             while (cnt <= num)
    30         {
    31             merge(l[cnt].x, l[cnt].y, l[cnt].dis, l[cnt].dir);
    32             cnt++;
    33         }
    34         if (check(a, b))
    35             printf("%d
    ", abs(rela[a][0] - rela[b][0]) + abs(rela[a][1] - rela[b][1]));
    36         else
    37             printf("-1
    ");
    38     }
    39     return 0;
    40 }
    41 
    42 void init()
    43 {
    44     for (int i=1;i<=n;i++)
    45         f[i] = i, rela[i][0] = rela[i][1] = 0;
    46 }
    47 int find(int x)
    48 {
    49     if (f[x] == x) return x;
    50     int temp = f[x];
    51     f[x] = find(f[x]);
    52     rela[x][0] = rela[temp][0] + rela[x][0];
    53     rela[x][1] = rela[temp][1] + rela[x][1];
    54     return f[x];
    55 }
    56 void merge(int x, int y, int dis, char dir)
    57 {
    58     int fx = find(x), fy = find(y);
    59     if (fx != fy)
    60     {
    61         int dx = 0, dy = 0;
    62         f[fy] = fx;
    63         if (dir == 'E')
    64             dy -= dis;
    65         else if (dir == 'W')
    66             dy += dis;
    67         else if (dir == 'N')
    68             dx -= dis;
    69         else if (dir == 'S')
    70             dx += dis;
    71         dx -= rela[y][1], dy -= rela[y][0];
    72         dx += rela[x][1], dy += rela[x][0];
    73         rela[fy][0] = dy, rela[fy][1] = dx;
    74     }
    75 }
    76 bool check(int x, int y)
    77 {
    78     return find(x) == find(y);
    79 }
    View Code

     

  • 相关阅读:
    hospital 基于反射的 在线医疗项目(三)
    hospital 基于反射的 在线医疗项目(二)
    【前端笔记】之 消息提示框
    hospital 基于反射的 在线医疗项目(-)
    【前端笔记】之一个简单好看的的下拉菜单 :select下拉框
    Dubbo和Zookeeper在Linux系统的安装
    记录一下Java String类的常用方法
    myeclipse与tomcat、jdk的安装和配置
    jQuery选择器总结
    js根据2个日期计算相差天数
  • 原文地址:https://www.cnblogs.com/FantaDevourer/p/12795064.html
Copyright © 2020-2023  润新知