• 连分数理论


    1、Euler's continued fraction formula

    == The original formula ==
    [[Euler]] derived the formula as
    connecting a finite sum of products with a finite continued fraction.

    [
    a_0 + a_0a_1 + a_0a_1a_2 + cdots + a_0a_1a_2cdots a_n =
    cfrac{a_0}{1 - cfrac{a_1}{1 + a_1 - cfrac{a_2}{1 + a_2 - cfrac{ddots}{ddots
    cfrac{a_{n-1}}{1 + a_{n-1} - cfrac{a_n}{1 + a_n}}}}}}\,
    ]

    The identity is easily established by [[mathematical induction|induction]] on ''n'', and is therefore applicable in the limit: if the expression on the left is extended to represent a [[convergent series|convergent infinite series]], the expression on the right can also be extended to represent a convergent infinite continued fraction.

    2、Gauss's continued fraction

    ==Derivation==
    Let $f_0, f_1, f_2, dots$ be a sequence of analytic functions so that
    [f_{i-1} - f_i = k_i\,z\,f_{i+1}]
    for all $i > 0$, where each $k_i$ is a constant.

    Then
    [frac{f_{i-1}}{f_i} = 1 + k_i z frac{f_{i+1}}{{f_i}}, \,] and so [frac{f_i}{f_{i-1}} = frac{1}{1 + k_i z frac{f_{i+1}}{{f_i}}}]

    Setting $g_i = f_i / f_{i-1}$,
    [g_i = frac{1}{1 + k_i z g_{i+1}},]
    So
    [g_1 = frac{f_1}{f_0} = cfrac{1}{1 + k_1 z g_2} = cfrac{1}{1 + cfrac{k_1 z}{1 + k_2 z g_3}}
    = cfrac{1}{1 + cfrac{k_1 z}{1 + cfrac{k_2 z}{1 + k_3 z g_4}}} = dots]

    Repeating this ad infinitum produces the continued fraction expression
    [frac{f_1}{f_0} = cfrac{1}{1 + cfrac{k_1 z}{1 + cfrac{k_2 z}{1 + cfrac{k_3 z}{1 + {}ddots}}}}]

    In Gauss's continued fraction, the functions $f_i$ are hypergeometric functions of the form ${}_0F_1$, ${}_1F_1$, and ${}_2F_1$, and the equations $f_{i-1} - f_i = k_i z f_{i+1}$ arise as identities between functions where the parameters differ by integer amounts. These identities can be proven in several ways, for example by expanding out the series and comparing coefficients, or by taking the derivative in several ways and eliminating it from the equations generated.

  • 相关阅读:
    python正则表达式(+ {})(二)
    14丨 HTTP有哪些优点?又有哪些缺点?
    python正则表达式(. *)(一)
    12丨响应状态码该怎么用?
    Fiddler—Fiddler+willow插件应用(十四)
    11丨你能写出正确的网址吗?
    【洛谷P1858】多人背包
    【洛谷P3387】(模板)缩点
    【洛谷P2184】贪婪大陆
    Leetcode: 39. Combination Sum
  • 原文地址:https://www.cnblogs.com/Eufisky/p/7821460.html
Copyright © 2020-2023  润新知