(1)飞行员配对方案问题:二分图最大匹配。
思路:略。
1 #include<cstdio> 2 #include<cstring> 3 #define MAXN 1010 4 int cx[MAXN], cy[MAXN]; 5 int first[MAXN], next[MAXN], v[MAXN], e; 6 bool vis[MAXN]; 7 inline void addEdge(int x, int y) { 8 v[e] = y; 9 next[e] = first[x]; 10 first[x] = e++; 11 } 12 int path(int x) { 13 int i; 14 int y; 15 for (i = first[x]; i != -1; i = next[i]) { 16 y = v[i]; 17 if (!vis[y]) { 18 vis[y] = true; 19 if (cy[y] == -1 || path(cy[y])) { 20 cx[x] = y; 21 cy[y] = x; 22 return 1; 23 } 24 } 25 } 26 return 0; 27 } 28 int main() { 29 int n, m; 30 int i; 31 int x, y; 32 int ans; 33 while (~scanf("%d%d", &m, &n)) { 34 e = 0; 35 memset(first, -1, sizeof(first)); 36 while (scanf("%d%d", &x, &y), x != -1) { 37 addEdge(x, y); 38 } 39 ans = 0; 40 memset(cx, -1, sizeof(cx)); 41 memset(cy, -1, sizeof(cy)); 42 for (i = 1; i <= m; i++) { 43 memset(vis, false, sizeof(vis)); 44 ans += path(i); 45 } 46 if (ans) { 47 printf("%d\n", ans); 48 for (i = 1; i <= m; i++) { 49 if (cx[i] != -1) { 50 printf("%d %d\n", i, cx[i]); 51 } 52 } 53 } else { 54 puts("No Solution!"); 55 } 56 } 57 return 0; 58 }
(2)太空飞行计划问题:最大权闭合图。
思路:
1。源向实验连边,流量为收益。
2。仪器向汇连边,流量为消耗。
3。实验向仪器连边,流量为无穷。
4。所有实验的收益-最大流=最大收益。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #include<algorithm> 5 #include<iostream> 6 #define MAXL 1010 7 #define MAXN 100010 8 #define MAXM 1000010 9 #define oo 0x7FFFFFFF 10 using namespace std; 11 int first[MAXN], next[MAXM], v[MAXM], cost[MAXM], e; 12 int n; 13 int src, des; 14 15 bool flag; 16 bool vis[MAXL]; 17 char str[MAXN]; 18 vector<int> g[MAXL]; 19 vector<int> test; 20 vector<int> app; 21 int a[MAXL]; 22 inline void addEdge(int x, int y, int val) { 23 v[e] = y; 24 cost[e] = val; 25 next[e] = first[x]; 26 first[x] = e++; 27 28 v[e] = x; 29 cost[e] = 0; 30 next[e] = first[y]; 31 first[y] = e++; 32 } 33 int SAP() { 34 int pre[MAXN], cur[MAXN], dis[MAXN], gap[MAXN]; 35 int flow = 0; 36 int aug = oo; 37 int x, y; 38 bool flag; 39 for (int i = 0; i < n; i++) { 40 cur[i] = first[i]; 41 gap[i] = dis[i] = 0; 42 } 43 gap[src] = n; 44 x = pre[src] = src; 45 while (dis[src] < n) { 46 flag = false; 47 for (int &j = cur[x]; j != -1; j = next[j]) { 48 y = v[j]; 49 if (cost[j] > 0 && dis[x] == dis[y] + 1) { 50 flag = true; 51 aug = min(aug, cost[j]); 52 pre[y] = x; 53 x = y; 54 if (x == des) { 55 flow += aug; 56 while (x != src) { 57 x = pre[x]; 58 cost[cur[x]] -= aug; 59 cost[cur[x] ^ 1] += aug; 60 } 61 aug = oo; 62 } 63 break; 64 } 65 } 66 if (flag) { 67 continue; 68 } 69 int tmp = n; 70 for (int j = first[x]; j != -1; j = next[j]) { 71 y = v[j]; 72 if (cost[j] > 0 && dis[y] < tmp) { 73 tmp = dis[y]; 74 cur[x] = j; 75 } 76 } 77 if ((--gap[dis[x]]) == 0) { 78 break; 79 } 80 gap[dis[x] = tmp + 1]++; 81 x = pre[x]; 82 } 83 return flow; 84 } 85 void out(vector<int> res) { 86 int i; 87 sort(res.begin(), res.end()); 88 res.resize(unique(res.begin(), res.end()) - res.begin()); 89 for (i = 0; i < (int) res.size(); i++) { 90 if (i) { 91 putchar(' '); 92 } 93 printf("%d", res[i]); 94 } 95 putchar('\n'); 96 } 97 void dfs(int x) { 98 int i; 99 vis[x] = true; 100 if (x == des) { 101 flag = false; 102 } 103 for (i = first[x]; i != -1; i = next[i]) { 104 if (!vis[v[i]] && cost[i] > 0) { 105 dfs(v[i]); 106 } 107 } 108 } 109 int main() { 110 int m; 111 int i, j, k; 112 int len; 113 int ans; 114 while (~scanf("%d%d", &m, &n)) { 115 src = 0; 116 des = n + m + 1; 117 e = 0; 118 memset(first, -1, sizeof(first)); 119 gets(str); 120 for (i = 1; i <= m; i++) { 121 g[i].clear(); 122 gets(str); 123 len = strlen(str); 124 for (j = 0; j < len; j++) { 125 for (; j < len && str[j] == ' '; j++) 126 ; 127 if (j < len) { 128 sscanf(str + j, "%d", &k); 129 g[i].push_back(k); 130 } 131 for (; j < len && isdigit(str[j]); j++) 132 ; 133 } 134 } 135 for (i = 1; i <= n; i++) { 136 scanf("%d", &a[i]); 137 addEdge(m + i, des, a[i]); 138 } 139 ans = 0; 140 for (i = 1; i <= m; i++) { 141 addEdge(src, i, g[i][0]); 142 ans += g[i][0]; 143 for (j = 1; j < (int) g[i].size(); j++) { 144 addEdge(i, m + g[i][j], oo); 145 } 146 } 147 n = des + 1; 148 ans -= SAP(); 149 test.clear(); 150 app.clear(); 151 for (i = first[src]; i != -1; i = next[i]) { 152 k = v[i]; 153 flag = true; 154 memset(vis, false, sizeof(vis)); 155 dfs(k); 156 if (flag) { 157 test.push_back(k); 158 for (j = 1; j < (int) g[k].size(); j++) { 159 app.push_back(g[k][j]); 160 } 161 } 162 } 163 out(test); 164 out(app); 165 printf("%d\n", ans); 166 } 167 return 0; 168 }
(3)最小路径覆盖问题:有向无环图最小路径覆盖。
思路:
1。当原图没有边,增加一条边,就增加一个匹配,显然少了一条路径。
2。当已经有了一个匹配,增加一条边,不会增加匹配数,路径数需增加1。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXN 1010 5 #define MAXM 100010 6 using namespace std; 7 int first[MAXN], v[MAXM], next[MAXM], e; 8 int cx[MAXN], cy[MAXN]; 9 bool vis[MAXN]; 10 vector<int> res; 11 inline void addEdge(int x, int y) { 12 next[e] = first[x]; 13 v[e] = y; 14 first[x] = e++; 15 } 16 int path(int x) { 17 int i; 18 int y; 19 for (i = first[x]; i != -1; i = next[i]) { 20 y = v[i]; 21 if (!vis[y]) { 22 vis[y] = true; 23 if (cy[y] == -1 || path(cy[y])) { 24 cx[x] = y; 25 cy[y] = x; 26 return 1; 27 } 28 } 29 } 30 return 0; 31 } 32 int Match(int n) { 33 int i; 34 int ans = 0; 35 memset(cx, -1, sizeof(cx)); 36 memset(cy, -1, sizeof(cy)); 37 for (i = 1; i <= n; i++) { 38 memset(vis, false, sizeof(vis)); 39 ans += path(i); 40 } 41 return n - ans; 42 } 43 void dfs(int x) { 44 vis[x] = true; 45 res.push_back(x); 46 if (cx[x] != -1) { 47 dfs(cx[x]); 48 } 49 } 50 int main() { 51 int n, m; 52 int i, j; 53 int x, y; 54 int ans; 55 while (~scanf("%d%d", &n, &m)) { 56 e = 0; 57 memset(first, -1, sizeof(first)); 58 for (i = 0; i < m; i++) { 59 scanf("%d%d", &x, &y); 60 addEdge(x, y); 61 } 62 ans = Match(n); 63 memset(vis, false, sizeof(vis)); 64 for (i = 1; i <= n; i++) { 65 if (!vis[i]) { 66 res.clear(); 67 dfs(i); 68 for (j = 0; j < (int) res.size() - 1; j++) { 69 printf("%d ", res[j]); 70 } 71 printf("%d\n", res[j]); 72 } 73 } 74 printf("%d\n", ans); 75 } 76 return 0; 77 }
(4)魔术球问题:有向无环图最小路径覆盖。
思路:
1。若x+y为平方数,则x,y'连一条有向边。
2。递增答案,同时增加新的边,更新二分图的交错路。
3。最小路径覆盖=顶点数-二分图最大匹配。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXN 2010 5 #define MAXM 200010 6 using namespace std; 7 int first[MAXN], next[MAXM], v[MAXM], e; 8 int cx[MAXN], cy[MAXN]; 9 int nx[MAXN]; 10 bool vis[MAXN]; 11 bool sqr[MAXM]; 12 vector<int> res; 13 void init() { 14 int i; 15 memset(sqr, false, sizeof(sqr)); 16 for (i = 1; i * i < MAXM; i++) { 17 sqr[i * i] = true; 18 } 19 } 20 inline void addEdge(int x, int y) { 21 v[e] = y; 22 next[e] = first[x]; 23 first[x] = e++; 24 } 25 int path(int x) { 26 int i; 27 int y; 28 for (i = first[x]; i != -1; i = next[i]) { 29 y = v[i]; 30 if (!vis[y]) { 31 vis[y] = true; 32 if (cy[y] == -1 || path(cy[y])) { 33 cx[x] = y; 34 cy[y] = x; 35 return 1; 36 } 37 } 38 } 39 return 0; 40 } 41 int cal(int n) { 42 int i; 43 int ans; 44 for (i = 1; i < n; i++) { 45 if (sqr[i + n]) { 46 addEdge(i, n); 47 } 48 } 49 ans = 0; 50 for (i = 1; i <= n; i++) { 51 if (cx[i] == -1) { 52 memset(vis, false, sizeof(vis)); 53 ans += path(i); 54 } else { 55 ans++; 56 } 57 } 58 return n - ans; 59 } 60 void dfs(int x) { 61 vis[x] = true; 62 res.push_back(x); 63 if (nx[x] != -1) { 64 dfs(nx[x]); 65 } 66 } 67 int main() { 68 int n; 69 int i, j; 70 init(); 71 while (~scanf("%d", &n)) { 72 e = 0; 73 memset(first, -1, sizeof(first)); 74 memset(cx, -1, sizeof(cx)); 75 memset(cy, -1, sizeof(cy)); 76 for (i = 1; cal(i) <= n; i++) { 77 memcpy(nx, cx, sizeof(nx)); 78 } 79 n = i - 1; 80 printf("%d\n", n); 81 memset(vis, false, sizeof(vis)); 82 for (i = 1; i <= n; i++) { 83 if (!vis[i]) { 84 res.clear(); 85 dfs(i); 86 for (j = 0; j < (int) res.size() - 1; j++) { 87 printf("%d ", res[j]); 88 } 89 printf("%d\n", res[j]); 90 } 91 } 92 } 93 return 0; 94 }
(5)圆桌问题:二分图多重匹配。
思路:
1。从源点向每个单位连边,流量为单位人数。
2。从每个圆桌向汇点连边,流量为圆桌人数。
3。每个单位向每个圆桌都连边,流量为1。
4。求最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXN 1010 5 #define MAXM 1000010 6 #define oo 0x7FFFFFFF 7 using namespace std; 8 int first[MAXN], next[MAXM], v[MAXM], cost[MAXM], e; 9 int n; 10 int src, des; 11 inline void addEdge(int x, int y, int val) { 12 v[e] = y; 13 cost[e] = val; 14 next[e] = first[x]; 15 first[x] = e++; 16 17 v[e] = x; 18 cost[e] = 0; 19 next[e] = first[y]; 20 first[y] = e++; 21 } 22 int SAP() { 23 int pre[MAXN], cur[MAXN], dis[MAXN], gap[MAXN]; 24 int flow = 0; 25 int aug = oo; 26 int x, y; 27 bool flag; 28 for (int i = 0; i < n; i++) { 29 cur[i] = first[i]; 30 gap[i] = dis[i] = 0; 31 } 32 gap[src] = n; 33 x = pre[src] = src; 34 while (dis[src] < n) { 35 flag = false; 36 for (int &j = cur[x]; j != -1; j = next[j]) { 37 y = v[j]; 38 if (cost[j] > 0 && dis[x] == dis[y] + 1) { 39 flag = true; 40 aug = min(aug, cost[j]); 41 pre[y] = x; 42 x = y; 43 if (x == des) { 44 flow += aug; 45 while (x != src) { 46 x = pre[x]; 47 cost[cur[x]] -= aug; 48 cost[cur[x] ^ 1] += aug; 49 } 50 aug = oo; 51 } 52 break; 53 } 54 } 55 if (flag) { 56 continue; 57 } 58 int tmp = n; 59 for (int j = first[x]; j != -1; j = next[j]) { 60 y = v[j]; 61 if (cost[j] > 0 && dis[y] < tmp) { 62 tmp = dis[y]; 63 cur[x] = j; 64 } 65 } 66 if ((--gap[dis[x]]) == 0) { 67 break; 68 } 69 gap[dis[x] = tmp + 1]++; 70 x = pre[x]; 71 } 72 return flow; 73 } 74 int main() { 75 int m; 76 int i, j; 77 int tot; 78 vector<int> res[MAXN]; 79 scanf("%d%d", &m, &n); 80 src = 0; 81 des = n + m + 1; 82 e = 0; 83 memset(first, -1, sizeof(first)); 84 tot = 0; 85 for (i = 1; i <= m; i++) { 86 scanf("%d", &j); 87 addEdge(src, i, j); 88 tot += j; 89 } 90 for (i = 1; i <= n; i++) { 91 scanf("%d", &j); 92 addEdge(m + i, des, j); 93 } 94 for (i = 1; i <= m; i++) { 95 for (j = m + 1; j <= n + m; j++) { 96 addEdge(i, j, 1); 97 } 98 } 99 n = des + 1; 100 for (i = 0; i < MAXN; i++) { 101 res[i].clear(); 102 } 103 if (tot == SAP()) { 104 puts("1"); 105 for (i = first[src]; i != -1; i = next[i]) { 106 for (j = first[v[i]]; j != -1; j = next[j]) { 107 if (cost[j] == 0) { 108 res[v[i]].push_back(v[j] - m); 109 } 110 } 111 } 112 for (i = 1; i <= m; i++) { 113 for (j = 0; j < (int) res[i].size() - 1; j++) { 114 printf("%d ", res[i][j]); 115 } 116 printf("%d\n", res[i][j]); 117 } 118 } else { 119 puts("0"); 120 } 121 return 0; 122 }
(6)最长递增子序列问题:最多不相交路径。
思路:
1。对于第一问:dp即可。
2。每个点取的次数有要求,所以需要拆点,限制流量。
3。控制最长递增子序列,要从dp转移来连边。
题目描述有错:应是最长非降子序列,而不是严格递增的。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXN 10010 5 #define MAXM 1000010 6 #define oo 123456789 7 using namespace std; 8 int first[MAXN], next[MAXM], v[MAXM], cost[MAXM], e; 9 int n; 10 int src, des; 11 12 int dp[MAXN]; 13 int arr[MAXN]; 14 inline void addEdge(int x, int y, int val) { 15 v[e] = y; 16 cost[e] = val; 17 next[e] = first[x]; 18 first[x] = e++; 19 20 v[e] = x; 21 cost[e] = 0; 22 next[e] = first[y]; 23 first[y] = e++; 24 } 25 int SAP() { 26 int pre[MAXN], cur[MAXN], dis[MAXN], gap[MAXN]; 27 int flow = 0; 28 int aug = oo; 29 int x, y; 30 bool flag; 31 for (int i = 0; i < n; i++) { 32 cur[i] = first[i]; 33 gap[i] = dis[i] = 0; 34 } 35 gap[src] = n; 36 x = pre[src] = src; 37 while (dis[src] < n) { 38 flag = false; 39 for (int &j = cur[x]; j != -1; j = next[j]) { 40 y = v[j]; 41 if (cost[j] > 0 && dis[x] == dis[y] + 1) { 42 flag = true; 43 aug = min(aug, cost[j]); 44 pre[y] = x; 45 x = y; 46 if (x == des) { 47 flow = min(flow + aug, oo); 48 while (x != src) { 49 x = pre[x]; 50 cost[cur[x]] -= aug; 51 cost[cur[x] ^ 1] += aug; 52 } 53 aug = oo; 54 } 55 break; 56 } 57 } 58 if (flag) { 59 continue; 60 } 61 int tmp = n; 62 for (int j = first[x]; j != -1; j = next[j]) { 63 y = v[j]; 64 if (cost[j] > 0 && dis[y] < tmp) { 65 tmp = dis[y]; 66 cur[x] = j; 67 } 68 } 69 if ((--gap[dis[x]]) == 0) { 70 break; 71 } 72 gap[dis[x] = tmp + 1]++; 73 x = pre[x]; 74 } 75 return flow; 76 } 77 int getIndex(int x) { 78 return 2 * x - 1; 79 } 80 void cal(int len, int val) { 81 int i, j; 82 int tmp; 83 int ans; 84 e = 0; 85 memset(first, -1, sizeof(first)); 86 src = 0; 87 des = 2 * n + 1; 88 for (i = 1; i <= n; i++) { 89 if (i == 1 || i == n) { 90 addEdge(getIndex(i), getIndex(i) + 1, val); 91 } else { 92 addEdge(getIndex(i), getIndex(i) + 1, 1); 93 } 94 } 95 for (i = 1; i <= n; i++) { 96 if (dp[i] == 1) { 97 addEdge(src, getIndex(i), oo); 98 } 99 if (dp[i] == len) { 100 addEdge(getIndex(i) + 1, des, oo); 101 } 102 } 103 for (i = 1; i <= n; i++) { 104 for (j = 1; j < i; j++) { 105 if (arr[i] >= arr[j] && dp[i] == dp[j] + 1) { 106 addEdge(getIndex(j) + 1, getIndex(i), 1); 107 } 108 } 109 } 110 tmp = n; 111 n = des + 1; 112 ans = SAP(); 113 n = tmp; 114 if (ans == oo) { 115 ans = n; 116 } 117 printf("%d\n", ans); 118 } 119 int main() { 120 int i, j; 121 int ans; 122 while (~scanf("%d", &n)) { 123 for (i = 1; i <= n; i++) { 124 scanf("%d", &arr[i]); 125 dp[i] = 1; 126 } 127 for (i = 1; i <= n; i++) { 128 for (j = 1; j < i; j++) { 129 if (arr[i] >= arr[j]) { 130 dp[i] = max(dp[i], dp[j] + 1); 131 } 132 } 133 } 134 ans = 0; 135 for (i = 1; i <= n; i++) { 136 ans = max(ans, dp[i]); 137 } 138 printf("%d\n", ans); 139 cal(ans, 1); 140 cal(ans, oo); 141 } 142 return 0; 143 }
(7)试题库问题:二分图多重匹配。
思路:
1。从源点向每道试题连边,流量为1。
2。从每个类型向汇点连边,流量为每个类型所需要的题数。
3。每个试题向所属的类型都连边,流量为1。
4。求最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXN 1010 5 #define MAXM 1000010 6 #define oo 0x7FFFFFFF 7 using namespace std; 8 int first[MAXN], next[MAXM], v[MAXM], cost[MAXM], e; 9 int n; 10 int src, des; 11 inline void addEdge(int x, int y, int val) { 12 v[e] = y; 13 cost[e] = val; 14 next[e] = first[x]; 15 first[x] = e++; 16 17 v[e] = x; 18 cost[e] = 0; 19 next[e] = first[y]; 20 first[y] = e++; 21 } 22 int SAP() { 23 int pre[MAXN], cur[MAXN], dis[MAXN], gap[MAXN]; 24 int flow = 0; 25 int aug = oo; 26 int x, y; 27 bool flag; 28 for (int i = 0; i < n; i++) { 29 cur[i] = first[i]; 30 gap[i] = dis[i] = 0; 31 } 32 gap[src] = n; 33 x = pre[src] = src; 34 while (dis[src] < n) { 35 flag = false; 36 for (int &j = cur[x]; j != -1; j = next[j]) { 37 y = v[j]; 38 if (cost[j] > 0 && dis[x] == dis[y] + 1) { 39 flag = true; 40 aug = min(aug, cost[j]); 41 pre[y] = x; 42 x = y; 43 if (x == des) { 44 flow += aug; 45 while (x != src) { 46 x = pre[x]; 47 cost[cur[x]] -= aug; 48 cost[cur[x] ^ 1] += aug; 49 } 50 aug = oo; 51 } 52 break; 53 } 54 } 55 if (flag) { 56 continue; 57 } 58 int tmp = n; 59 for (int j = first[x]; j != -1; j = next[j]) { 60 y = v[j]; 61 if (cost[j] > 0 && dis[y] < tmp) { 62 tmp = dis[y]; 63 cur[x] = j; 64 } 65 } 66 if ((--gap[dis[x]]) == 0) { 67 break; 68 } 69 gap[dis[x] = tmp + 1]++; 70 x = pre[x]; 71 } 72 return flow; 73 } 74 int main() { 75 int m; 76 int i, j, k; 77 int tot; 78 vector<int> res[MAXN]; 79 while (~scanf("%d%d", &m, &n)) { 80 tot = 0; 81 src = 0; 82 des = m + n + 1; 83 e = 0; 84 memset(first, -1, sizeof(first)); 85 for (i = 1; i <= m; i++) { 86 scanf("%d", &j); 87 addEdge(n + i, des, j); 88 tot += j; 89 } 90 for (i = 1; i <= n; i++) { 91 scanf("%d", &j); 92 addEdge(src, i, 1); 93 while (j--) { 94 scanf("%d", &k); 95 addEdge(i, n + k, 1); 96 } 97 } 98 k = n; 99 n = des + 1; 100 if (SAP() == tot) { 101 for (i = 0; i < MAXN; i++) { 102 res[i].clear(); 103 } 104 for (i = first[src]; i != -1; i = next[i]) { 105 for (j = first[v[i]]; j != -1; j = next[j]) { 106 if (cost[j] == 0) { 107 if (v[j] > k) 108 res[v[j] - k].push_back(v[i]); 109 } 110 } 111 } 112 for (i = 1; i <= m; i++) { 113 printf("%d:", i); 114 for (j = 0; j < (int) res[i].size(); j++) { 115 printf(" %d", res[i][j]); 116 } 117 putchar('\n'); 118 } 119 } else { 120 puts("No Solution!"); 121 } 122 } 123 return 0; 124 }
(9)方格取数问题:二分图点权最大独立集。
思路:
1。方格黑白染色。源向黑格连边,流量为点权;白格向汇连边,流量为点权;黑格与相邻的白格连边,流量为oo。因此,最小割是简单割,即最小权覆盖集。
2。由于独立集与覆盖集是互补的,所以最小权覆盖集+最大权独立集=总权值。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXL 210 5 #define MAXN 100010 6 #define MAXM 1000010 7 #define oo 123456789 8 using namespace std; 9 int first[MAXN], next[MAXM], v[MAXM], cost[MAXM], e; 10 int n, m; 11 int src, des; 12 int arr[MAXL][MAXL]; 13 int go[4][2] = { { 1, 0 }, { -1, 0 }, { 0, 1 }, { 0, -1 } }; 14 inline void addEdge(int x, int y, int val) { 15 v[e] = y; 16 cost[e] = val; 17 next[e] = first[x]; 18 first[x] = e++; 19 20 v[e] = x; 21 cost[e] = 0; 22 next[e] = first[y]; 23 first[y] = e++; 24 } 25 int SAP() { 26 int pre[MAXN], cur[MAXN], dis[MAXN], gap[MAXN]; 27 int flow = 0; 28 int aug = oo; 29 int x, y; 30 bool flag; 31 for (int i = 0; i < n; i++) { 32 cur[i] = first[i]; 33 gap[i] = dis[i] = 0; 34 } 35 gap[src] = n; 36 x = pre[src] = src; 37 while (dis[src] < n) { 38 flag = false; 39 for (int &j = cur[x]; j != -1; j = next[j]) { 40 y = v[j]; 41 if (cost[j] > 0 && dis[x] == dis[y] + 1) { 42 flag = true; 43 aug = min(aug, cost[j]); 44 pre[y] = x; 45 x = y; 46 if (x == des) { 47 flow += aug; 48 while (x != src) { 49 x = pre[x]; 50 cost[cur[x]] -= aug; 51 cost[cur[x] ^ 1] += aug; 52 } 53 aug = oo; 54 } 55 break; 56 } 57 } 58 if (flag) { 59 continue; 60 } 61 int tmp = n; 62 for (int j = first[x]; j != -1; j = next[j]) { 63 y = v[j]; 64 if (cost[j] > 0 && dis[y] < tmp) { 65 tmp = dis[y]; 66 cur[x] = j; 67 } 68 } 69 if ((--gap[dis[x]]) == 0) { 70 break; 71 } 72 gap[dis[x] = tmp + 1]++; 73 x = pre[x]; 74 } 75 return flow; 76 } 77 int getIndex(int x, int y) { 78 return (x - 1) * m + y; 79 } 80 int main() { 81 int i, j, k; 82 int x, y; 83 int ans; 84 while (~scanf("%d%d", &n, &m)) { 85 src = 0; 86 des = m * n + 1; 87 e = 0; 88 memset(first, -1, sizeof(first)); 89 ans = 0; 90 for (i = 1; i <= n; i++) { 91 for (j = 1; j <= m; j++) { 92 scanf("%d", &arr[i][j]); 93 ans += arr[i][j]; 94 if ((i + j) & 1) { 95 addEdge(src, getIndex(i, j), arr[i][j]); 96 for (k = 0; k < 4; k++) { 97 x = i + go[k][0]; 98 y = j + go[k][1]; 99 if (x > 0 && x <= n && y > 0 && y <= m) { 100 addEdge(getIndex(i, j), getIndex(x, y), oo); 101 } 102 } 103 } else { 104 addEdge(getIndex(i, j), des, arr[i][j]); 105 } 106 } 107 } 108 n = des + 1; 109 ans = ans - SAP(); 110 printf("%d\n", ans); 111 } 112 return 0; 113 }
(10)餐巾计划问题:线性规划网络优化。
思路:
1。由于第i天的新餐巾可以由i-m天的脏餐巾洗来,因此考虑按天数建模。
2。每天的餐巾有新旧之分,则考虑拆点,每天的新餐巾数量和每天的旧餐巾数量。
3。新餐巾可以直接买来。
4。新餐巾可以由前些天的旧餐巾洗来。
5。旧餐巾可以由上一天的旧餐巾积累而来。
6。求最小费用最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<algorithm> 5 #define oo 123456 6 #define MAXN 100010 7 #define MAXM 1000010 8 using namespace std; 9 int V, e; 10 int src, des; 11 int lk[MAXN], father[MAXN]; 12 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 13 int dis[MAXN]; 14 bool inq[MAXN]; 15 16 int arr[MAXN]; 17 void addEdge(int x, int y, int f, int c) { 18 v[e] = y; 19 flow[e] = f; 20 cost[e] = c; 21 next[e] = first[x]; 22 first[x] = e++; 23 24 v[e] = x; 25 flow[e] = 0; 26 cost[e] = -c; 27 next[e] = first[y]; 28 first[y] = e++; 29 } 30 bool SPFA() { 31 int i, u; 32 deque<int> q; 33 memset(inq, false, sizeof(inq)); 34 for (i = 0; i <= V; i++) { 35 dis[i] = oo; 36 } 37 dis[src] = 0; 38 q.push_back(src); 39 inq[src] = true; 40 while (!q.empty()) { 41 u = q.front(); 42 q.pop_front(); 43 inq[u] = false; 44 for (i = first[u]; i != -1; i = next[i]) { 45 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 46 dis[v[i]] = dis[u] + cost[i]; 47 father[v[i]] = u; 48 lk[v[i]] = i; 49 if (!inq[v[i]]) { 50 inq[v[i]] = true; 51 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 52 q.push_front(v[i]); 53 } else { 54 q.push_back(v[i]); 55 } 56 } 57 } 58 } 59 } 60 return dis[des] != oo; 61 } 62 int MinCostMaxFlow() { 63 int u; 64 int ans; 65 int tmp; 66 for (ans = 0; SPFA();) { 67 tmp = oo; 68 for (u = des; u; u = father[u]) { 69 tmp = min(tmp, flow[lk[u]]); 70 } 71 for (u = des; u; u = father[u]) { 72 flow[lk[u]] -= tmp; 73 flow[lk[u] ^ 1] += tmp; 74 } 75 ans += tmp * dis[des]; 76 } 77 return ans; 78 } 79 int main() { 80 int i; 81 int n; 82 int buy, fastCost, slowCost, slowDay, fastDay; 83 while (~scanf("%d%d%d%d%d%d", &n, &buy, &fastDay, &fastCost, &slowDay, 84 &slowCost)) { 85 e = 0; 86 src = 0; 87 des = n + n + 1; 88 V = des; 89 memset(first, -1, sizeof(first)); 90 for (i = 1; i <= n; i++) { 91 scanf("%d", &arr[i]); 92 addEdge(2 * i, des, arr[i], 0); 93 addEdge(src, 2 * i, arr[i], buy); 94 addEdge(src, 2 * i - 1, arr[i], 0); 95 } 96 for (i = 2; i <= n; i++) { 97 addEdge(2 * (i - 1) - 1, 2 * i - 1, oo, 0); 98 } 99 for (i = 1; i <= n; i++) { 100 if (i + fastDay <= n) { 101 addEdge(2 * i - 1, 2 * (i + fastDay), oo, fastCost); 102 } 103 if (i + slowDay <= n) { 104 addEdge(2 * i - 1, 2 * (i + slowDay), oo, slowCost); 105 } 106 } 107 for (i = 1; i <= n; i++) { 108 addEdge(src, i, oo, buy); 109 } 110 printf("%d\n", MinCostMaxFlow()); 111 } 112 return 0; 113 }
(11)航空路线问题:最长不相交路径。
思路:
1。从东->西,再从西->东。相当于从东->西两条不相交的路径。
2。要求路径最长,则考虑最大费用最大流。
1 #include<iostream> 2 #include<algorithm> 3 #include<string> 4 #include<cstring> 5 #include<queue> 6 #include<vector> 7 #include<map> 8 #define oo 0x7FFFFFFF 9 #define MAXL 110 10 #define MAXN 10010 11 #define MAXM 1000010 12 using namespace std; 13 int V, n, m, e; 14 int src, des; 15 int lk[MAXN], father[MAXN]; 16 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 17 int dis[MAXN]; 18 bool inq[MAXN]; 19 20 vector<string> city; 21 map<string, int> mymap; 22 vector<int> res; 23 bool g[MAXL][MAXL]; 24 bool vis[MAXN]; 25 void addEdge(int x, int y, int f, int c) { 26 v[e] = y; 27 flow[e] = f; 28 cost[e] = c; 29 next[e] = first[x]; 30 first[x] = e++; 31 32 v[e] = x; 33 flow[e] = 0; 34 cost[e] = -c; 35 next[e] = first[y]; 36 first[y] = e++; 37 } 38 bool SPFA() { 39 int i, u; 40 deque<int> q; 41 memset(inq, false, sizeof(inq)); 42 for (i = 0; i <= V; i++) { 43 dis[i] = oo; 44 } 45 dis[src] = 0; 46 q.push_back(src); 47 inq[src] = true; 48 while (!q.empty()) { 49 u = q.front(); 50 q.pop_front(); 51 inq[u] = false; 52 for (i = first[u]; i != -1; i = next[i]) { 53 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 54 dis[v[i]] = dis[u] + cost[i]; 55 father[v[i]] = u; 56 lk[v[i]] = i; 57 if (!inq[v[i]]) { 58 inq[v[i]] = true; 59 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 60 q.push_front(v[i]); 61 } else { 62 q.push_back(v[i]); 63 } 64 } 65 } 66 } 67 } 68 return dis[des] != oo; 69 } 70 int MinCostMaxFlow(int tot) { 71 int u; 72 int ans; 73 int tmp; 74 int flux; 75 for (ans = flux = 0; SPFA();) { 76 tmp = oo; 77 for (u = des; u; u = father[u]) { 78 tmp = min(tmp, flow[lk[u]]); 79 } 80 for (u = des; u; u = father[u]) { 81 flow[lk[u]] -= tmp; 82 flow[lk[u] ^ 1] += tmp; 83 } 84 ans += tmp * dis[des]; 85 flux += tmp; 86 } 87 if (flux != tot) { 88 return oo; 89 } else { 90 return ans; 91 } 92 } 93 void dfs(int x) { 94 vis[x] = true; 95 int i; 96 res.push_back(x >> 1); 97 for (i = first[x]; i != -1; i = next[i]) { 98 if ((i & 1) == 0 && flow[i] == 0 && !vis[v[i]]) { 99 dfs(v[i]); 100 } 101 } 102 } 103 int main() { 104 int i, j; 105 string str1, str2; 106 int ans; 107 bool flag; 108 while (cin >> n >> m) { 109 memset(g, false, sizeof(g)); 110 src = 0; 111 des = n + n - 1; 112 V = des; 113 e = 0; 114 memset(first, -1, sizeof(first)); 115 city.clear(); 116 mymap.clear(); 117 addEdge(0, 1, 2, 0); 118 addEdge(des - 1, des, 2, 0); 119 for (i = 2; i < des - 1; i += 2) { 120 addEdge(i, i + 1, 1, 0); 121 } 122 for (i = 0; i < n; i++) { 123 cin >> str1; 124 city.push_back(str1); 125 mymap[str1] = i << 1; 126 } 127 while (m--) { 128 cin >> str1 >> str2; 129 i = mymap[str1]; 130 j = mymap[str2]; 131 if (i > j) { 132 swap(i, j); 133 } 134 addEdge(i ^ 1, j, 1, -1); 135 g[i / 2][j / 2] = g[j / 2][i / 2] = true; 136 } 137 ans = MinCostMaxFlow(2); 138 if (ans == oo) { 139 if (g[0][n - 1]) { 140 cout << 2 << endl; 141 cout << city[0] << endl; 142 cout << city[n - 1] << endl; 143 cout << city[0] << endl; 144 } else { 145 cout << "No Solution!" << endl; 146 } 147 } else { 148 cout << -ans << endl; 149 memset(vis, false, sizeof(vis)); 150 flag = false; 151 cout << city[0] << endl; 152 for (i = first[1]; i != -1; i = next[i]) { 153 if ((i & 1) == 0 && flow[i] == 0 && !vis[v[i]]) { 154 res.clear(); 155 dfs(v[i]); 156 if (flag) { 157 reverse(res.begin(), res.end()); 158 } else { 159 flag = true; 160 } 161 res.resize(unique(res.begin(), res.end()) - res.begin()); 162 for (j = 0; j < (int) res.size(); j++) { 163 cout << city[res[j]] << endl; 164 } 165 } 166 } 167 cout << city[0] << endl; 168 } 169 } 170 return 0; 171 }
(12)软件补丁问题:最小转移代价。
思路:
1。只有20个补丁,很容易想到状态压缩。
2。最多(1<<20)个状态,一个状态到另一个状态间有一个花费。
3。求最短花费,就是最短路了。
题目描述有错:第二个字符串中'-'是f1的,'+'是f2的。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #define oo 0x7FFFFFFF 5 #define MAXN 1<<20 6 #define MAXM 110 7 using namespace std; 8 int dis[MAXN]; 9 bool inq[MAXN]; 10 struct patch { 11 int b1, b2; 12 int f1, f2; 13 int cost; 14 } p[MAXM]; 15 int n, m; 16 void update(char str[], int &x, int &y) { 17 int i; 18 x = y = 0; 19 for (i = 0; str[i]; i++) { 20 if (str[i] == '+') { 21 x |= 1 << i; 22 } else if (str[i] == '-') { 23 y |= 1 << i; 24 } 25 } 26 } 27 void spfa(int src) { 28 int i; 29 int x, y; 30 deque<int> q; 31 memset(inq, false, sizeof(inq)); 32 for (i = 0; i < (1 << n); i++) { 33 dis[i] = oo; 34 } 35 dis[src] = 0; 36 q.push_back(src); 37 while (!q.empty()) { 38 x = q.front(); 39 q.pop_front(); 40 inq[x] = false; 41 for (i = 0; i < m; i++) { 42 if ((x | p[i].b1) == x && (x & p[i].b2) == 0) { 43 y = x & (~p[i].f1); 44 y |= p[i].f2; 45 if (dis[y] > dis[x] + p[i].cost) { 46 dis[y] = dis[x] + p[i].cost; 47 if (!inq[y]) { 48 if (!q.empty() && dis[y] <= dis[q.front()]) { 49 q.push_front(y); 50 } else { 51 q.push_back(y); 52 } 53 inq[y] = true; 54 } 55 } 56 } 57 } 58 } 59 } 60 int main() { 61 int i; 62 char a[MAXM], b[MAXM]; 63 while (~scanf("%d%d", &n, &m)) { 64 for (i = 0; i < m; i++) { 65 scanf("%d %s %s", &p[i].cost, a, b); 66 update(a, p[i].b1, p[i].b2); 67 update(b, p[i].f2, p[i].f1); 68 } 69 spfa((1 << n) - 1); 70 if (dis[0] == oo) { 71 puts("0"); 72 } else { 73 printf("%d\n", dis[0]); 74 } 75 } 76 return 0; 77 }
(13)星际转移问题:网络判定。
思路:
1。枚举天数。随着天数的增加,不断增加点和边。
2。判最大流是否大于等于K。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<vector> 5 #define oo 123456 6 #define MAXN 1010 7 #define MAXM 100010 8 using namespace std; 9 int src; 10 int des; 11 int V; 12 int ans; 13 vector<int> path[MAXN]; 14 vector<int> cap; 15 vector<int> ind[MAXN]; 16 vector<int> pos[MAXN]; 17 int G[MAXN][MAXN]; 18 int first[MAXN], next[MAXN], v[MAXN], e; 19 bool vis[MAXN]; 20 int BFS() { 21 queue<int> q; 22 int tmp, i, u, v, head, p[MAXN]; 23 memset(p, -1, sizeof(p)); 24 p[src] = src; 25 q.push(src); 26 while (!q.empty()) { 27 head = q.front(); 28 q.pop(); 29 for (i = 1; i <= V; i++) { 30 if (G[head][i] > 0 && p[i] == -1) { 31 p[i] = head; 32 q.push(i); 33 } 34 } 35 } 36 if (p[des] == -1) 37 return 0; 38 for (tmp = oo, u = des; p[u] != u;) { 39 v = u; 40 u = p[u]; 41 tmp = min(tmp, G[u][v]); 42 } 43 for (u = des; p[u] != u;) { 44 v = u; 45 u = p[u]; 46 G[u][v] -= tmp; 47 G[v][u] += tmp; 48 } 49 return tmp; 50 } 51 void EdmondsKarp() { 52 int tmp; 53 for (; (tmp = BFS()); ans += tmp) 54 ; 55 } 56 inline void addEdge(int x, int y) { 57 next[e] = first[x]; 58 v[e] = y; 59 first[x] = e++; 60 } 61 bool dfs(int x) { 62 int i; 63 int y; 64 vis[x] = true; 65 for (i = first[x]; i != -1; i = next[i]) { 66 y = v[i]; 67 if (!vis[y]) { 68 if (dfs(y)) { 69 return true; 70 } 71 } 72 } 73 return x == des; 74 } 75 int main() { 76 int n, m, k; 77 int i, j, t; 78 int tmp; 79 int day; 80 int tot; 81 while (~scanf("%d%d%d", &n, &m, &k)) { 82 cap.clear(); 83 for (i = 0; i < m; i++) { 84 scanf("%d%d", &j, &tmp); 85 cap.push_back(j); 86 while (tmp--) { 87 scanf("%d", &j); 88 j += 3; 89 path[i].push_back(j); 90 } 91 } 92 src = 3; 93 des = 2; 94 e = 0; 95 memset(first, -1, sizeof(first)); 96 memset(vis, false, sizeof(vis)); 97 for (i = 0; i < m; i++) { 98 for (j = 0; j < (int) path[i].size(); j++) { 99 addEdge(path[i][j], path[i][(j + 1) % path[i].size()]); 100 addEdge(path[i][j + 1] % path[i].size(), path[i][j]); 101 } 102 } 103 if (dfs(src)) { 104 ans = 0; 105 memset(G, 0, sizeof(G)); 106 src = 0; 107 des = 1; 108 tot = 2; 109 for (i = 0; i < m; i++) { 110 ind[i].clear(); 111 pos[i].clear(); 112 ind[i].push_back(tot++); 113 pos[i].push_back(path[i][0]); 114 } 115 for (i = 0; i < m; i++) { 116 if (pos[i][0] == 3) { 117 G[src][ind[i][0]] = oo; 118 } else if (pos[i][0] == 2) { 119 G[ind[i][0]][des] = oo; 120 } 121 } 122 for (day = 1; ans < k; day++) { 123 for (i = 0; i < m; i++) { 124 ind[i].push_back(tot++); 125 pos[i].push_back(path[i][day % (path[i].size())]); 126 G[ind[i][day - 1]][ind[i][day]] = cap[i]; 127 } 128 for (i = 0; i < m; i++) { 129 for (j = 0; j < m; j++) { 130 for (t = 0; t <= day; t++) { 131 if (pos[j][t] == pos[i][day]) { 132 G[ind[j][t]][ind[i][day]] = oo; 133 } 134 } 135 } 136 } 137 for (i = 0; i < m; i++) { 138 if (pos[i][day] == 3) { 139 G[src][ind[i][day]] = oo; 140 } else if (pos[i][day] == 2) { 141 G[ind[i][day]][des] = oo; 142 } 143 } 144 V = tot; 145 EdmondsKarp(); 146 } 147 printf("%d\n", day - 1); 148 } else { 149 puts("0"); 150 } 151 } 152 return 0; 153 }
(14)孤岛营救问题:分层图最短路径。
思路:
对钥匙种类状态压缩。dp[i][j][k]表示在(i,j),钥匙种类为k的最短路。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #define MAXN 11 5 #define oo 123456789 6 using namespace std; 7 int dp[MAXN][MAXN][1 << MAXN]; 8 int g[MAXN][MAXN][MAXN][MAXN]; 9 int mp[MAXN][MAXN]; 10 int go[4][2] = { { 1, 0 }, { -1, 0 }, { 0, 1 }, { 0, -1 } }; 11 struct node { 12 int x; 13 int y; 14 int key; 15 int dis; 16 }; 17 int n, m, p; 18 inline bool canMove(int x0, int y0, int x1, int y1, int key) { 19 int tmp = g[x0][y0][x1][y1]; 20 if (tmp == -1) { 21 return true; 22 } else if (tmp == 0) { 23 return false; 24 } else if (key & (1 << (tmp - 1))) { 25 return true; 26 } else { 27 return false; 28 } 29 } 30 int bfs() { 31 node head, tmp; 32 queue<node> q; 33 int ans; 34 int i, j, k; 35 for (i = 1; i <= n; i++) { 36 for (j = 1; j <= m; j++) { 37 for (k = 0; k < (1 << p); k++) 38 dp[i][j][k] = oo; 39 } 40 } 41 head.x = head.y = 1; 42 head.key = 0; 43 head.dis = 0; 44 q.push(head); 45 while (!q.empty()) { 46 head = q.front(); 47 q.pop(); 48 for (i = 0; i < 4; i++) { 49 tmp.x = head.x + go[i][0]; 50 tmp.y = head.y + go[i][1]; 51 if (tmp.x > 0 && tmp.x <= n && tmp.y > 0 && tmp.y <= m 52 && canMove(head.x, head.y, tmp.x, tmp.y, head.key)) { 53 tmp.dis = head.dis + 1; 54 tmp.key = head.key; 55 tmp.key |= mp[tmp.x][tmp.y]; 56 if (tmp.dis < dp[tmp.x][tmp.y][tmp.key]) { 57 dp[tmp.x][tmp.y][tmp.key] = tmp.dis; 58 q.push(tmp); 59 } 60 } 61 } 62 } 63 ans = oo; 64 for (i = 0; i < (1 << p); i++) { 65 ans = min(ans, dp[n][m][i]); 66 } 67 if (ans == oo) { 68 return -1; 69 } else { 70 return ans; 71 } 72 } 73 int main() { 74 int i, j; 75 int x0, y0, x1, y1; 76 while (~scanf("%d%d%d", &n, &m, &p)) { 77 memset(g, -1, sizeof(g)); 78 memset(mp, 0, sizeof(mp)); 79 scanf("%d", &i); 80 while (i--) { 81 scanf("%d%d%d%d%d", &x0, &y0, &x1, &y1, &j); 82 g[x0][y0][x1][y1] = g[x1][y1][x0][y0] = j; 83 } 84 scanf("%d", &i); 85 while (i--) { 86 scanf("%d%d%d", &x0, &y0, &j); 87 mp[x0][y0] |= 1 << (j - 1); 88 } 89 printf("%d\n", bfs()); 90 } 91 return 0; 92 }
(15)汽车加油行驶问题:分层图最短路径。
思路:
dp[i][j][k]表示在(i,j),油量为k的最少花费。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #define MAXN 110 5 #define MAXM 15 6 #define oo 123456789 7 using namespace std; 8 int dp[MAXN][MAXN][MAXM]; 9 int n, k, a, b, c; 10 int g[MAXN][MAXN]; 11 struct node { 12 int x; 13 int y; 14 int gass; 15 int cost; 16 }; 17 int go[4][2] = { { 1, 0 }, { -1, 0 }, { 0, 1 }, { 0, -1 } }; 18 int spfa() { 19 int i, j, l; 20 int ans; 21 node head, tmp; 22 queue<node> q; 23 for (i = 0; i <= n; i++) { 24 for (j = 0; j <= n; j++) { 25 for (l = 0; l <= k; l++) { 26 dp[i][j][l] = oo; 27 } 28 } 29 } 30 dp[1][1][k] = 0; 31 head.x = head.y = 1; 32 head.gass = k; 33 head.cost = 0; 34 q.push(head); 35 while (!q.empty()) { 36 head = q.front(); 37 q.pop(); 38 if (head.gass == 0) { 39 continue; 40 } 41 for (i = 0; i < 4; i++) { 42 tmp.x = head.x + go[i][0]; 43 tmp.y = head.y + go[i][1]; 44 if (tmp.x > 0 && tmp.x <= n && tmp.y > 0 && tmp.y <= n) { 45 tmp.gass = head.gass - 1; 46 tmp.cost = head.cost; 47 if (tmp.x < head.x || tmp.y < head.y) { 48 tmp.cost += b; 49 } 50 if (g[tmp.x][tmp.y]) { 51 tmp.gass = k; 52 tmp.cost += a; 53 } 54 if (tmp.cost < dp[tmp.x][tmp.y][tmp.gass]) { 55 dp[tmp.x][tmp.y][tmp.gass] = tmp.cost; 56 q.push(tmp); 57 } 58 if (!g[tmp.x][tmp.y]) { 59 tmp.gass = k; 60 tmp.cost += a + c; 61 if (tmp.cost < dp[tmp.x][tmp.y][tmp.gass]) { 62 dp[tmp.x][tmp.y][tmp.gass] = tmp.cost; 63 q.push(tmp); 64 } 65 } 66 } 67 } 68 } 69 ans = oo; 70 for (i = 0; i <= k; i++) { 71 ans = min(ans, dp[n][n][i]); 72 } 73 return ans; 74 } 75 int main() { 76 int i, j; 77 while (~scanf("%d%d%d%d%d", &n, &k, &a, &b, &c)) { 78 for (i = 1; i <= n; i++) { 79 for (j = 1; j <= n; j++) { 80 scanf("%d", &g[i][j]); 81 } 82 } 83 printf("%d\n", spfa()); 84 } 85 return 0; 86 }
(16)数字梯形问题:最大权不相交路径。
思路:
规则1:拆点,点与点之间流量都为1。
规则2:不拆点,点与点流量为1。
规则3:不拆点,点与点流量为无穷。
添加源点,汇点。求最小费用最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<vector> 5 #define oo 0x7FFFFFFF 6 #define MAXN 10010 7 #define MAXM 1000010 8 using namespace std; 9 int V, n, m, e; 10 int src, des; 11 int link[MAXN], father[MAXN]; 12 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 13 int dis[MAXN]; 14 bool inq[MAXN]; 15 16 vector<int> arr[MAXN]; 17 vector<int> pos[MAXN]; 18 int size; 19 void addEdge(int x, int y, int f, int c) { 20 v[e] = y; 21 flow[e] = f; 22 cost[e] = c; 23 next[e] = first[x]; 24 first[x] = e++; 25 26 v[e] = x; 27 flow[e] = 0; 28 cost[e] = -c; 29 next[e] = first[y]; 30 first[y] = e++; 31 } 32 bool SPFA() { 33 int i, u; 34 deque<int> q; 35 memset(inq, false, sizeof(inq)); 36 for (i = 0; i <= V; i++) { 37 dis[i] = oo; 38 } 39 dis[src] = 0; 40 q.push_back(src); 41 inq[src] = true; 42 while (!q.empty()) { 43 u = q.front(); 44 q.pop_front(); 45 inq[u] = false; 46 for (i = first[u]; i != -1; i = next[i]) { 47 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 48 dis[v[i]] = dis[u] + cost[i]; 49 father[v[i]] = u; 50 link[v[i]] = i; 51 if (!inq[v[i]]) { 52 inq[v[i]] = true; 53 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 54 q.push_front(v[i]); 55 } else { 56 q.push_back(v[i]); 57 } 58 } 59 } 60 } 61 } 62 return dis[des] != oo; 63 } 64 int MinCostMaxFlow() { 65 int u; 66 int ans; 67 int tmp; 68 for (ans = 0; SPFA();) { 69 tmp = oo; 70 for (u = des; u; u = father[u]) { 71 tmp = min(tmp, flow[link[u]]); 72 } 73 for (u = des; u; u = father[u]) { 74 flow[link[u]] -= tmp; 75 flow[link[u] ^ 1] += tmp; 76 } 77 ans += tmp * dis[des]; 78 } 79 return ans; 80 } 81 int getIndex(int x) { 82 return 2 * x - 1; 83 } 84 void rule1() { 85 int i, j; 86 e = 0; 87 src = 0; 88 des = 2 * size + 1; 89 V = des; 90 memset(first, -1, sizeof(first)); 91 for (i = 1; i <= size; i++) { 92 addEdge(getIndex(i), getIndex(i) + 1, 1, 0); 93 } 94 for (i = 0; i < (int) arr[1].size(); i++) { 95 addEdge(src, getIndex(pos[1][i]), 1, -arr[1][i]); 96 } 97 for (i = 1; i < n; i++) { 98 for (j = 0; j < (int) arr[i].size(); j++) { 99 addEdge(getIndex(pos[i][j]) + 1, getIndex(pos[i + 1][j]), 1, 100 -arr[i + 1][j]); 101 addEdge(getIndex(pos[i][j]) + 1, getIndex(pos[i + 1][j + 1]), 1, 102 -arr[i + 1][j + 1]); 103 } 104 } 105 for (j = 0; j < (int) arr[n].size(); j++) { 106 addEdge(getIndex(pos[n][j]) + 1, des, 1, 0); 107 } 108 printf("%d\n", -MinCostMaxFlow()); 109 } 110 void rule2() { 111 int i, j; 112 e = 0; 113 src = 0; 114 des = size + 1; 115 V = des; 116 memset(first, -1, sizeof(first)); 117 for (i = 0; i < (int) arr[1].size(); i++) { 118 addEdge(src, pos[1][i], 1, -arr[1][i]); 119 } 120 for (i = 1; i < n; i++) { 121 for (j = 0; j < (int) arr[i].size(); j++) { 122 addEdge(pos[i][j], pos[i + 1][j], 1, -arr[i + 1][j]); 123 addEdge(pos[i][j], pos[i + 1][j + 1], 1, -arr[i + 1][j + 1]); 124 } 125 } 126 for (j = 0; j < (int) arr[n].size(); j++) { 127 addEdge(pos[n][j], des, oo, 0); 128 } 129 printf("%d\n", -MinCostMaxFlow()); 130 } 131 void rule3() { 132 int i, j; 133 e = 0; 134 src = 0; 135 des = size + 1; 136 V = des; 137 memset(first, -1, sizeof(first)); 138 for (i = 0; i < (int) arr[1].size(); i++) { 139 addEdge(src, pos[1][i], 1, -arr[1][i]); 140 } 141 for (i = 1; i < n; i++) { 142 for (j = 0; j < (int) arr[i].size(); j++) { 143 addEdge(pos[i][j], pos[i + 1][j], oo, -arr[i + 1][j]); 144 addEdge(pos[i][j], pos[i + 1][j + 1], oo, -arr[i + 1][j + 1]); 145 } 146 } 147 for (j = 0; j < (int) arr[n].size(); j++) { 148 addEdge(pos[n][j], des, oo, 0); 149 } 150 printf("%d\n", -MinCostMaxFlow()); 151 } 152 int main() { 153 int i, j; 154 int tmp; 155 while (~scanf("%d%d", &m, &n)) { 156 size = 0; 157 for (i = 1; i <= n; i++) { 158 arr[i].clear(); 159 pos[i].clear(); 160 for (j = 0; j < m + i - 1; j++) { 161 scanf("%d", &tmp); 162 arr[i].push_back(tmp); 163 pos[i].push_back(++size); 164 } 165 } 166 rule1(); 167 rule2(); 168 rule3(); 169 } 170 return 0; 171 }
(17)运输问题:网络费用流量。
思路:
1。最小费用最大流。
2。最大费用最大流,费用乘以-1,求最小费用最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<vector> 5 #define oo 0x7FFFFFFF 6 #define MAXL 1010 7 #define MAXN 10010 8 #define MAXM 1000010 9 using namespace std; 10 int V, n, m, e; 11 int src, des; 12 int link[MAXN], father[MAXN]; 13 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 14 int dis[MAXN]; 15 bool inq[MAXN]; 16 17 int a[MAXN]; 18 int b[MAXN]; 19 int c[MAXL][MAXL]; 20 void addEdge(int x, int y, int f, int c) { 21 v[e] = y; 22 flow[e] = f; 23 cost[e] = c; 24 next[e] = first[x]; 25 first[x] = e++; 26 27 v[e] = x; 28 flow[e] = 0; 29 cost[e] = -c; 30 next[e] = first[y]; 31 first[y] = e++; 32 } 33 bool SPFA() { 34 int i, u; 35 deque<int> q; 36 memset(inq, false, sizeof(inq)); 37 for (i = 0; i <= V; i++) { 38 dis[i] = oo; 39 } 40 dis[src] = 0; 41 q.push_back(src); 42 inq[src] = true; 43 while (!q.empty()) { 44 u = q.front(); 45 q.pop_front(); 46 inq[u] = false; 47 for (i = first[u]; i != -1; i = next[i]) { 48 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 49 dis[v[i]] = dis[u] + cost[i]; 50 father[v[i]] = u; 51 link[v[i]] = i; 52 if (!inq[v[i]]) { 53 inq[v[i]] = true; 54 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 55 q.push_front(v[i]); 56 } else { 57 q.push_back(v[i]); 58 } 59 } 60 } 61 } 62 } 63 return dis[des] != oo; 64 } 65 int MinCostMaxFlow() { 66 int u; 67 int ans; 68 int tmp; 69 for (ans = 0; SPFA();) { 70 tmp = oo; 71 for (u = des; u; u = father[u]) { 72 tmp = min(tmp, flow[link[u]]); 73 } 74 for (u = des; u; u = father[u]) { 75 flow[link[u]] -= tmp; 76 flow[link[u] ^ 1] += tmp; 77 } 78 ans += tmp * dis[des]; 79 } 80 return ans; 81 } 82 void calMinCostMaxFlow(int flag) { 83 int i, j; 84 src = 0; 85 des = n + m + 1; 86 V = des; 87 e = 0; 88 memset(first, -1, sizeof(first)); 89 for (i = 1; i <= m; i++) { 90 addEdge(src, i, a[i], 0); 91 } 92 for (i = 1; i <= n; i++) { 93 addEdge(m + i, des, b[i], 0); 94 } 95 for (i = 1; i <= m; i++) { 96 for (j = 1; j <= n; j++) { 97 addEdge(i, m + j, oo, c[i][j] * flag); 98 } 99 } 100 printf("%d\n", flag * MinCostMaxFlow()); 101 } 102 int main() { 103 int i, j; 104 while (~scanf("%d%d", &m, &n)) { 105 for (i = 1; i <= m; i++) { 106 scanf("%d", &a[i]); 107 } 108 for (i = 1; i <= n; i++) { 109 scanf("%d", &b[i]); 110 } 111 for (i = 1; i <= m; i++) { 112 for (j = 1; j <= n; j++) { 113 scanf("%d", &c[i][j]); 114 } 115 } 116 calMinCostMaxFlow(1); 117 calMinCostMaxFlow(-1); 118 } 119 return 0; 120 }
(18)分配问题:二分图最佳匹配。
思路:
同(17)运输问题。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<vector> 5 #define oo 0x7FFFFFFF 6 #define MAXL 1010 7 #define MAXN 10010 8 #define MAXM 1000010 9 using namespace std; 10 int V, n, e; 11 int src, des; 12 int link[MAXN], father[MAXN]; 13 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 14 int dis[MAXN]; 15 bool inq[MAXN]; 16 17 int c[MAXL][MAXL]; 18 void addEdge(int x, int y, int f, int c) { 19 v[e] = y; 20 flow[e] = f; 21 cost[e] = c; 22 next[e] = first[x]; 23 first[x] = e++; 24 25 v[e] = x; 26 flow[e] = 0; 27 cost[e] = -c; 28 next[e] = first[y]; 29 first[y] = e++; 30 } 31 bool SPFA() { 32 int i, u; 33 deque<int> q; 34 memset(inq, false, sizeof(inq)); 35 for (i = 0; i <= V; i++) { 36 dis[i] = oo; 37 } 38 dis[src] = 0; 39 q.push_back(src); 40 inq[src] = true; 41 while (!q.empty()) { 42 u = q.front(); 43 q.pop_front(); 44 inq[u] = false; 45 for (i = first[u]; i != -1; i = next[i]) { 46 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 47 dis[v[i]] = dis[u] + cost[i]; 48 father[v[i]] = u; 49 link[v[i]] = i; 50 if (!inq[v[i]]) { 51 inq[v[i]] = true; 52 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 53 q.push_front(v[i]); 54 } else { 55 q.push_back(v[i]); 56 } 57 } 58 } 59 } 60 } 61 return dis[des] != oo; 62 } 63 int MinCostMaxFlow() { 64 int u; 65 int ans; 66 int tmp; 67 for (ans = 0; SPFA();) { 68 tmp = oo; 69 for (u = des; u; u = father[u]) { 70 tmp = min(tmp, flow[link[u]]); 71 } 72 for (u = des; u; u = father[u]) { 73 flow[link[u]] -= tmp; 74 flow[link[u] ^ 1] += tmp; 75 } 76 ans += tmp * dis[des]; 77 } 78 return ans; 79 } 80 void calMinCostMaxFlow(int flag) { 81 int i, j; 82 src = 0; 83 des = n + n + 1; 84 V = des; 85 e = 0; 86 memset(first, -1, sizeof(first)); 87 for (i = 1; i <= n; i++) { 88 for (j = 1; j <= n; j++) { 89 addEdge(i, n + j, oo, c[i][j] * flag); 90 } 91 } 92 for (i = 1; i <= n; i++) { 93 addEdge(src, i, 1, 0); 94 addEdge(n + i, des, 1, 0); 95 } 96 printf("%d\n", flag * MinCostMaxFlow()); 97 } 98 int main() { 99 int i, j; 100 while (~scanf("%d", &n)) { 101 for (i = 1; i <= n; i++) { 102 for (j = 1; j <= n; j++) { 103 scanf("%d", &c[i][j]); 104 } 105 } 106 calMinCostMaxFlow(1); 107 calMinCostMaxFlow(-1); 108 } 109 return 0; 110 }
(19)负载平衡问题:最小代价供求。
思路:
1。向相邻的左右两个点连边,流量为oo,费用为1。
2。若一个点库存比平均值多a,则从源向该点连边,流量为a,费用为0。
3。若一个点库存比平均值少a,则从该点向汇连边,流量为a,费用为0。
4。求最小费用最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #define oo 123456 5 #define MAXN 100010 6 #define MAXM 1000010 7 using namespace std; 8 int V, n, m, e; 9 int src, des; 10 int lk[MAXN], father[MAXN]; 11 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 12 int dis[MAXN]; 13 bool inq[MAXN]; 14 15 int arr[MAXN]; 16 void addEdge(int x, int y, int f, int c) { 17 v[e] = y; 18 flow[e] = f; 19 cost[e] = c; 20 next[e] = first[x]; 21 first[x] = e++; 22 23 v[e] = x; 24 flow[e] = 0; 25 cost[e] = -c; 26 next[e] = first[y]; 27 first[y] = e++; 28 } 29 bool SPFA() { 30 int i, u; 31 deque<int> q; 32 memset(inq, false, sizeof(inq)); 33 for (i = 0; i <= V; i++) { 34 dis[i] = oo; 35 } 36 dis[src] = 0; 37 q.push_back(src); 38 inq[src] = true; 39 while (!q.empty()) { 40 u = q.front(); 41 q.pop_front(); 42 inq[u] = false; 43 for (i = first[u]; i != -1; i = next[i]) { 44 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 45 dis[v[i]] = dis[u] + cost[i]; 46 father[v[i]] = u; 47 lk[v[i]] = i; 48 if (!inq[v[i]]) { 49 inq[v[i]] = true; 50 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 51 q.push_front(v[i]); 52 } else { 53 q.push_back(v[i]); 54 } 55 } 56 } 57 } 58 } 59 return dis[des] != oo; 60 } 61 int MinCostMaxFlow() { 62 int u; 63 int ans; 64 int tmp; 65 for (ans = 0; SPFA();) { 66 tmp = oo; 67 for (u = des; u; u = father[u]) { 68 tmp = min(tmp, flow[lk[u]]); 69 } 70 for (u = des; u; u = father[u]) { 71 flow[lk[u]] -= tmp; 72 flow[lk[u] ^ 1] += tmp; 73 } 74 ans += tmp * dis[des]; 75 } 76 return ans; 77 } 78 int main() { 79 int i, j; 80 int sum; 81 while (~scanf("%d", &n)) { 82 e = 0; 83 src = 0; 84 des = n + 1; 85 V = des; 86 memset(first, -1, sizeof(first)); 87 sum = 0; 88 for (i = 1; i <= n; i++) { 89 scanf("%d", &arr[i]); 90 sum += arr[i]; 91 } 92 sum /= n; 93 for (i = 1; i <= n; i++) { 94 arr[i] -= sum; 95 if (arr[i] > 0) { 96 addEdge(src, i, arr[i], 0); 97 } else if (arr[i] < 0) { 98 addEdge(i, des, -arr[i], 0); 99 } 100 j = i + 1; 101 if (j > n) { 102 j = 1; 103 } 104 addEdge(i, j, oo, 1); 105 addEdge(j, i, oo, 1); 106 j = i - 1; 107 if (j < 1) { 108 j = n; 109 } 110 addEdge(i, j, oo, 1); 111 addEdge(j, i, oo, 1); 112 } 113 printf("%d\n", MinCostMaxFlow()); 114 } 115 return 0; 116 }
(20)深海机器人问题:线性规划网络优化。
思路:
1。每个权值只能取一次,流量设为1。
2。每条路径可以取多次,流量设为oo。
3。最大费用最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #define oo 123456 5 #define MAXN 100010 6 #define MAXM 1000010 7 using namespace std; 8 int V, n, m, e; 9 int src, des; 10 int lk[MAXN], father[MAXN]; 11 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 12 int dis[MAXN]; 13 bool inq[MAXN]; 14 15 void addEdge(int x, int y, int f, int c) { 16 v[e] = y; 17 flow[e] = f; 18 cost[e] = c; 19 next[e] = first[x]; 20 first[x] = e++; 21 22 v[e] = x; 23 flow[e] = 0; 24 cost[e] = -c; 25 next[e] = first[y]; 26 first[y] = e++; 27 } 28 bool SPFA() { 29 int i, u; 30 deque<int> q; 31 memset(inq, false, sizeof(inq)); 32 for (i = 0; i <= V; i++) { 33 dis[i] = oo; 34 } 35 dis[src] = 0; 36 q.push_back(src); 37 inq[src] = true; 38 while (!q.empty()) { 39 u = q.front(); 40 q.pop_front(); 41 inq[u] = false; 42 for (i = first[u]; i != -1; i = next[i]) { 43 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 44 dis[v[i]] = dis[u] + cost[i]; 45 father[v[i]] = u; 46 lk[v[i]] = i; 47 if (!inq[v[i]]) { 48 inq[v[i]] = true; 49 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 50 q.push_front(v[i]); 51 } else { 52 q.push_back(v[i]); 53 } 54 } 55 } 56 } 57 } 58 return dis[des] != oo; 59 } 60 int MinCostMaxFlow() { 61 int u; 62 int ans; 63 int tmp; 64 for (ans = 0; SPFA();) { 65 tmp = oo; 66 for (u = des; u; u = father[u]) { 67 tmp = min(tmp, flow[lk[u]]); 68 } 69 for (u = des; u; u = father[u]) { 70 flow[lk[u]] -= tmp; 71 flow[lk[u] ^ 1] += tmp; 72 } 73 ans += tmp * dis[des]; 74 } 75 return ans; 76 } 77 int main() { 78 int a, b; 79 int p, q; 80 int i, j; 81 int x, y, val; 82 while (~scanf("%d%d%d%d", &a, &b, &p, &q)) { 83 e = 0; 84 src = 0; 85 des = (p + 1) * (q + 1) + 1; 86 V = des; 87 memset(first, -1, sizeof(first)); 88 for (i = 0; i <= p; i++) { 89 for (j = 1; j <= q; j++) { 90 scanf("%d", &x); 91 addEdge(i * (q + 1) + j, i * (q + 1) + j + 1, 1, -x); 92 addEdge(i * (q + 1) + j, i * (q + 1) + j + 1, oo, 0); 93 } 94 } 95 for (i = 0; i <= q; i++) { 96 for (j = 1; j <= p; j++) { 97 scanf("%d", &x); 98 addEdge((j - 1) * (q + 1) + i + 1, j * (q + 1) + i + 1, 1, -x); 99 addEdge((j - 1) * (q + 1) + i + 1, j * (q + 1) + i + 1, oo, 0); 100 } 101 } 102 while (a--) { 103 scanf("%d%d%d", &val, &y, &x); 104 addEdge(src, y * (q + 1) + x + 1, val, 0); 105 } 106 while (b--) { 107 scanf("%d%d%d", &val, &y, &x); 108 addEdge(y * (q + 1) + x + 1, des, val, 0); 109 } 110 printf("%d\n", -MinCostMaxFlow()); 111 } 112 }
(21)最长k可重区间集问题:最大权不相交路径。
思路:
1。对所有端点排序后,离散化。
2。源到1,流量为k,费用为0。最后一个点到汇,流量为oo,费用为0。
3。若有区间[x,y],则x向y连边,流量为1,费用为x-y。
4。最大费用最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<queue> 4 #include<algorithm> 5 #define oo 123456 6 #define MAXN 100010 7 #define MAXM 1000010 8 using namespace std; 9 int V, n, m, e; 10 int src, des; 11 int lk[MAXN], father[MAXN]; 12 int first[MAXN], cost[MAXM], flow[MAXM], next[MAXM], v[MAXM]; 13 int dis[MAXN]; 14 bool inq[MAXN]; 15 16 int arr[MAXN]; 17 int size; 18 struct point { 19 int x, y; 20 } p[MAXN]; 21 void addEdge(int x, int y, int f, int c) { 22 v[e] = y; 23 flow[e] = f; 24 cost[e] = c; 25 next[e] = first[x]; 26 first[x] = e++; 27 28 v[e] = x; 29 flow[e] = 0; 30 cost[e] = -c; 31 next[e] = first[y]; 32 first[y] = e++; 33 } 34 bool SPFA() { 35 int i, u; 36 deque<int> q; 37 memset(inq, false, sizeof(inq)); 38 for (i = 0; i <= V; i++) { 39 dis[i] = oo; 40 } 41 dis[src] = 0; 42 q.push_back(src); 43 inq[src] = true; 44 while (!q.empty()) { 45 u = q.front(); 46 q.pop_front(); 47 inq[u] = false; 48 for (i = first[u]; i != -1; i = next[i]) { 49 if (flow[i] && dis[v[i]] > dis[u] + cost[i]) { 50 dis[v[i]] = dis[u] + cost[i]; 51 father[v[i]] = u; 52 lk[v[i]] = i; 53 if (!inq[v[i]]) { 54 inq[v[i]] = true; 55 if (!q.empty() && dis[v[i]] <= dis[q.front()]) { 56 q.push_front(v[i]); 57 } else { 58 q.push_back(v[i]); 59 } 60 } 61 } 62 } 63 } 64 return dis[des] != oo; 65 } 66 int MinCostMaxFlow() { 67 int u; 68 int ans; 69 int tmp; 70 for (ans = 0; SPFA();) { 71 tmp = oo; 72 for (u = des; u; u = father[u]) { 73 tmp = min(tmp, flow[lk[u]]); 74 } 75 for (u = des; u; u = father[u]) { 76 flow[lk[u]] -= tmp; 77 flow[lk[u] ^ 1] += tmp; 78 } 79 ans += tmp * dis[des]; 80 } 81 return ans; 82 } 83 int main() { 84 int i; 85 int m; 86 int x, y; 87 while (~scanf("%d%d", &n, &m)) { 88 e = 0; 89 src = 0; 90 des = n + n + 1; 91 V = des; 92 memset(first, -1, sizeof(first)); 93 size = 0; 94 for (i = 0; i < n; i++) { 95 scanf("%d%d", &p[i].x, &p[i].y); 96 arr[size++] = p[i].x; 97 arr[size++] = p[i].y; 98 } 99 sort(arr, arr + size); 100 size = unique(arr, arr + size) - arr; 101 addEdge(src, 1, m, 0); 102 addEdge(size, des, oo, 0); 103 for (i = 2; i <= size; i++) { 104 addEdge(i - 1, i, oo, 0); 105 } 106 for (i = 0; i < n; i++) { 107 x = lower_bound(arr, arr + size, p[i].x) - arr + 1; 108 y = lower_bound(arr, arr + size, p[i].y) - arr + 1; 109 addEdge(x, y, 1, p[i].x - p[i].y); 110 } 111 printf("%d\n", -MinCostMaxFlow()); 112 } 113 return 0; 114 }
(24)骑士共存问题:二分图最大独立集。
思路:
1。冲突的位置相互连边。
2.。添加源,汇。
3。求最大流。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAXL 210 5 #define MAXN 100010 6 #define MAXM 1000010 7 #define oo 0x7FFFFFFF 8 using namespace std; 9 int first[MAXN], next[MAXM], v[MAXM], cost[MAXM], e; 10 int n; 11 int src, des; 12 bool flag[MAXL][MAXL]; 13 int go[][2] = { { 1, 2 }, { 1, -2 }, { -1, 2 }, { -1, -2 }, { 2, 1 }, { 2, -1 }, 14 { -2, 1 }, { -2, -1 } }; 15 inline void addEdge(int x, int y, int val) { 16 v[e] = y; 17 cost[e] = val; 18 next[e] = first[x]; 19 first[x] = e++; 20 21 v[e] = x; 22 cost[e] = 0; 23 next[e] = first[y]; 24 first[y] = e++; 25 } 26 int SAP() { 27 int pre[MAXN], cur[MAXN], dis[MAXN], gap[MAXN]; 28 int flow = 0; 29 int aug = oo; 30 int x, y; 31 bool flag; 32 for (int i = 0; i < n; i++) { 33 cur[i] = first[i]; 34 gap[i] = dis[i] = 0; 35 } 36 gap[src] = n; 37 x = pre[src] = src; 38 while (dis[src] < n) { 39 flag = false; 40 for (int &j = cur[x]; j != -1; j = next[j]) { 41 y = v[j]; 42 if (cost[j] > 0 && dis[x] == dis[y] + 1) { 43 flag = true; 44 aug = min(aug, cost[j]); 45 pre[y] = x; 46 x = y; 47 if (x == des) { 48 flow += aug; 49 while (x != src) { 50 x = pre[x]; 51 cost[cur[x]] -= aug; 52 cost[cur[x] ^ 1] += aug; 53 } 54 aug = oo; 55 } 56 break; 57 } 58 } 59 if (flag) { 60 continue; 61 } 62 int tmp = n; 63 for (int j = first[x]; j != -1; j = next[j]) { 64 y = v[j]; 65 if (cost[j] > 0 && dis[y] < tmp) { 66 tmp = dis[y]; 67 cur[x] = j; 68 } 69 } 70 if ((--gap[dis[x]]) == 0) { 71 break; 72 } 73 gap[dis[x] = tmp + 1]++; 74 x = pre[x]; 75 } 76 return flow; 77 } 78 int getIndex(int x, int y) { 79 return (x - 1) * n + y; 80 } 81 int main() { 82 int m; 83 int i, j, k; 84 int x, y; 85 int ans; 86 while (~scanf("%d%d", &n, &m)) { 87 src = 0; 88 des = 2 * n * n + 1; 89 e = 0; 90 memset(first, -1, sizeof(first)); 91 memset(flag, false, sizeof(flag)); 92 for (i = 0; i < m; i++) { 93 scanf("%d%d", &x, &y); 94 flag[x][y] = true; 95 } 96 for (i = 1; i <= n; i++) { 97 for (j = 1; j <= n; j++) { 98 if (flag[i][j]) { 99 continue; 100 } 101 addEdge(src, getIndex(i, j), 1); 102 addEdge(n * n + getIndex(i, j), des, 1); 103 for (k = 0; k < 8; k++) { 104 x = i + go[k][0]; 105 y = j + go[k][1]; 106 if (x > 0 && x <= n && y > 0 && y <= n && !flag[x][y]) { 107 addEdge(getIndex(i, j), n * n + getIndex(x, y), 1); 108 } 109 } 110 } 111 } 112 ans = n * n - m; 113 n = des + 1; 114 printf("%d\n", ans - SAP() / 2); 115 } 116 return 0; 117 }