• P3205 [HNOI2010]合唱队[区间dp]


    题目描述

    为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中:

    -第一个人直接插入空的当前队形中。

    -对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。

    当N个人全部插入当前队形后便获得最终排出的队形。

    例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750,

    那么小A会按以下步骤获得最终排出的队形:

    1850

    • 1850 , 1900 因为 1900 > 1850
    • 1700, 1850, 1900 因为 1700 < 1900
    • 1650 . 1700, 1850, 1900 因为 1650 < 1700
    • 1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650
    • 1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800

    因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800

    小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形

    说明/提示

    30%的数据:n<=100

    100%的数据:n<=1000

    解析

    其实这道题是递推/记搜

    观察题目,容易归纳出每次取一个人加入队形时,他只可能加在队列的最左边或者最右边,满足区间dp的性质。

    (dp[0/1][i][j])表示在区间(isim j)中最后放的人在最左/右时的方案数。

    根据加法原理,容易写出状态转移方程:

    [dp[i][j][0] = dp[i + 1][j][0] · [h_i < h_{i+1}] + dp[i + 1][j][1] · [h_i < h_j ]\ dp[i][j][1] = dp[i][j − 1][0] · [h_j > h_i ] + dp[i][j - 1][1] · [h_j > h_{j−1}] ]

    自认为这题比较神奇的一点(我WA了好几次),是初始化,鬼知道为什么只用初始化一维((0/1)那一维),而且无论你初始化哪一维答案都是一样的。

    参考代码

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<ctime>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<map>
    #define mod 19650827
    #define N 1010
    using namespace std;
    int dp[2][N][N],n,a[N];
    int main()
    {
    	scanf("%d",&n);
    	for(int i=1;i<=n;++i) scanf("%d",&a[i]),dp[0][i][i]=1;
    	for(int len=2;len<=n;++len)
    	 for(int l=1;l<=n-len+1;++l){
    	 	int r=l+len-1;
    	 	// 0 left 1 right
    	 	int t1=0,t2=0,t3=0,t4=0;
    	 	if(a[l]<a[l+1]) t1=1;
    	 	if(a[l]<a[r]) t2=1;
    	 	if(a[r]>a[r-1]) t3=1;
    	 	if(a[r]>a[l]) t4=1;
    	 	dp[0][l][r]=(dp[0][l+1][r]*t1%mod+dp[1][l+1][r]*t2%mod)%mod;
    	 	dp[1][l][r]=(dp[1][l][r-1]*t3%mod+dp[0][l][r-1]*t4%mod)%mod;
    	 }
    	printf("%d
    ",((dp[0][1][n]%mod+dp[1][1][n])%mod)%mod);
    	return 0;
    }
    
  • 相关阅读:
    12 Source Code Profilers for C & C++
    HttpWebRequest的使用方法
    MSDN Windows 下载
    Qt 4.7 在VS2010环境下的编译
    [转].NET Logging Tools and Libraries
    硬盘崩溃之后
    .net core 下使用 logdashboard 日志面板
    工具收藏 年终工作总结必备工具之ppt利器
    Dapper 的应用和Dapper.Contrib 的方法封装(一)
    Dapper 的应用和Dapper.Contrib 的方法封装(二)
  • 原文地址:https://www.cnblogs.com/DarkValkyrie/p/11295311.html
Copyright © 2020-2023  润新知