• 康托展开学习


    康托展开

      

    康托展开的公式


      

      把一个整数X展开成如下形式:

      X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!

      其中,a为整数,并且0<=a[i]<i(1<=i<=n)

      

    康托展开的应用实例


      

      {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。

      代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。

      他们间的对应关系可由康托展开来找到。

      如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :

      第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!是康托展开。

      再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。

      

    康托展开的代码实现


      后文的PASCAL程序经检验可以正确工作,并指示出了一个简洁的计算方法,和前文的运算思路略有不同,不需要检验某数码是否使用过,只需检查第(n+1-i)位之后比第(n+1-i)位小的位的数量,将这个数量作为公式中的a[i]。(1<=i<=n)

      并附此算法C++版本。

      康托展开的代码(C语言):

      unsigned long cantor(unsigned long S)

      {

      long x=0,i,p,k,j;

      bool hash[8]=;

      for (i=8;i>=2;i--)

      {

      k=S>> 3*(i-1);

      S-=k<<3*(i-1);

      hash[k]=true;

      p=k;

      for (j=0;j<=k-1;j++)

      if (hash[j])

      p--;

      x+=fac[i-1]*p;

      }

      return x;

      }

      康托展开的代码(Pascal语言):

      s为数组,用来存储要求的数,形如(1,3,2,4)。

      n为数组中元素个数。

      fac[x]为x!

      *function cantor:longint:;

      *var

      * i,j,temp:integer;

      * num:longint;

      *begin

      * num:=0;

      * for i:=1 to n-1 do

      * begin

      *   temp:=0;

      *   for j:=i+1 to n do

      *     if s[j]<s[ i ] then inc(temp);

      *   num:=num+fac[n-i]*temp;

      * end;

      *cantor:=num+1;

      *end;

      康托展开的代码(C++语言):

      int fac[]={1,1,2,6,24,120,720,5040,40320,362880};//...

      long cantor(int s[],int n){

      int i,j,temp,num;

      num=0;

      for(i=1;i<n;i++){

      temp=0;

      for(int j=i+1;j<=n;j++){

      if(s[j]<s[i])temp++;

      }

      num+=fac[n-i]*temp;

      }

      return (num+1);

      }

    —Anime Otaku Save The World.
  • 相关阅读:
    为什么需要链路追踪
    Nacos Config 多环境的配置
    Nacos Config 客户端的使用
    Nacos Config 服务端初始化
    使用路由网关的全局过滤功能
    什么是 Spring Cloud Gateway
    c# 第五节 第一个控制台程序、第一个桌面、快捷键、注释
    c# 第四节 Net Framework编写应用程序的过程
    c# 第三节 vs的安装
    c# 第二节 c#的常用IDE环境
  • 原文地址:https://www.cnblogs.com/DMoon/p/4928636.html
Copyright © 2020-2023  润新知