• BZOJ DZY Loves Math系列


    ⑤(BZOJ 3560)

    $Sigma_{i_1|a_1}Sigma_{i_2|a_2}Sigma_{i_3|a_3}Sigma_{i_4|a_4}...Sigma_{i_n|a_n}phi(i_1i_2i_3i_4...i_n)$
    $phi()$是积性函数
    $phi(p^k)=p^{k-1}*(p-1)$
    设当前质数为p,对于第i个数,假设它分解质因数后p的次数为ai,那么p的答案就是
    $[(1+p^1+...+p^{a1})(1+p^1+...+p^{a2})...(1+p^1+...+p^{an})-1]frac{p-1}{p}+1$

    乘起来就好了.....

    $Sigma_{i=1}^nSigma_{j=1}^mlcm(i,j)^{gcd(i,j)}$
    $=Sigma_{i=1}^nSigma_{j=1}^m (frac{i*j}{gcd(i,j)})^{gcd(i,j)}$
    枚举gcd(i,j)=d
    $=Sigma_{d=1}^nSigma_{i=1}^{lfloor frac{n}{d} floor}Sigma_{j=1}^{lfloor frac{m}{d} floor}(d*i*j)^d*(gcd(i,j)==1)$
    $=Sigma_{d=1}^nSigma_{i=1}^{lfloor frac{n}{d} floor}Sigma_{j=1}^{lfloor frac{m}{d} floor}Sigma_{k|i且k|j}(d*i*j)^d$
    $=Sigma_{d=1}^nd^dSigma_{t=1}^{lfloorfrac{n}{d} floor}mu(t)[Sigma_{i=1}^{lfloorfrac{n}{dt} floor}(it)^dSigma_{j=1}^{lfloorfrac{m}{dt} floor}(jt)^d]$
    $=Sigma_{d=1}^nd^dSigma_{t=1}^{lfloorfrac{n}{d} floor}mu(t)*t^{2d}[Sigma_{i=1}^{lfloorfrac{n}{dt} floor}i^dSigma_{j=1}^{lfloorfrac{m}{dt} floor}j^d]$

    $Sigma _{i=1}^nSigma _{j=1}^imu(lcm(i,j)^{gcd(i,j)})$
    $=Sigma_{k=1}^nSigma_{i=1}^{lfloorfrac{n}{k} floor}Sigma_{j=1}^imu((ijk)^{k}*gcd(i,j)==1)$
    $∵$k>1时 $mu(x^k)=0$
    $∴ =Sigma_{i=1}^nSigma_{j=1}^imu(ij)*e(gcd(i,j))$
    $∵gcd(i,j)==1$
    $∴mu(ij)=mu(i)*mu(j)$
    $=Sigma_{i=1}^nmu(i)*Sigma_{j=1}^imu(j)*Sigma_{k|i且k|j}mu(k)$
    $=Sigma_{i=1}^nmu(i)*Sigma_{k|i}mu(k)Sigma_{j=1}^{lfloorfrac{i}{k} floor}mu(jk)$
    $mu(i)≠0$时 再枚举k是i的约数 发现数量只有$5*10^7$
    复杂度变成了
    什么复杂度
    O(能过)就好了...

  • 相关阅读:
    Android的消息机制
    AndroidVolley框架的使用
    Android事件分发机制浅谈(三)源码分析(View篇)
    Java 编程下简介 Class 与类加载
    [ZJOI2007]最大半连通子图
    [HNOI2012]永无乡
    [HEOI2016/TJOI2016]排序
    CSS 条件缩放图片
    CSS图片垂直居中
    最近写 ASP.NET 中出现的错误 & 实现DataTable和DataSet类型的客户端/服务器端自动转换
  • 原文地址:https://www.cnblogs.com/SiriusRen/p/6702031.html
Copyright © 2020-2023  润新知