• Linux内核kobject结构体分析


    1、前言

    Linux内核中有大量的驱动,而这些驱动往往具有类似的结构,根据面向对象的思想,可以将共同的部分提取为父类,而这个父类就是kobject,kobject结构体中包含了大量设备的必须信息,而三大类设备驱动都需要包含这个kobject结构,运用面向对象的思想来看问题,也就是继承来自kobject,一个kobject对象往往就对应sysfs中的一个目录,kobject是组成设备模型的基本结构,kobject需要处理的基本任务有如下:

    (1)对象的引用计数

    当一个内核对象被创建时,不可能知道对象的存活时间,跟踪该对象的的生命周期的一个方法就是使用引用计数,当内核中没有代码持有该对象的引用时,说明该对象可以被销毁了;

    (2)sysfs表述

    一个kobject对象往往对应sysfs中的一个目录,kobject被用来与内核交互并创建它的sysfs可见表述;

    (3)数据结构关联

    从整体上看,设备模型是一个友好而复杂的数据结构,通过kobject对象实现了大量的连接而构成了一个多层次的体系结构;

    (4)热拔插事件处理

    当系统中的硬件被热插拔时,在kobject子系统的控制下,将产生事件以通知用户空间。 

    2、kobject以及相关结构体

    Linux内核源码中对kobject结构体的定义在include/linux/kobject.h文件中,实现在lib/kobjet.c,struct kobject结构体的定义如下所示:

    struct kobject {
        const char        *name;
        struct list_head    entry;
        struct kobject        *parent;
        struct kset        *kset;
        struct kobj_type    *ktype;
        struct kernfs_node    *sd; /* sysfs directory entry */
        struct kref        kref;
    #ifdef CONFIG_DEBUG_KOBJECT_RELEASE
        struct delayed_work    release;
    #endif
        unsigned int state_initialized:1;
        unsigned int state_in_sysfs:1;
        unsigned int state_add_uevent_sent:1;
        unsigned int state_remove_uevent_sent:1;
        unsigned int uevent_suppress:1;
    };

    结构体常用成员解释:

    name:表示kobject对象的名字,对应sysfs下的一个目录;

    entry:在kobject中嵌入双向链表list_head结构;

    parent:指向当前kobject父对象的指针;

    kset:表示当前kobject对象所属的集合;

    ktype:表示当前kobject对象所属类型;

    sd:用于VFS文件系统的目录项,是设备与文件之间的桥梁,sysfs中的符号链接就是通过kernfs_node内的联合体实现的;

    kref:是对kobject的引用计数,当引用计数为0时,就回调之前注册的release函数释放该对象;

    state_initialized:1:初始化的标志位,在对象被初始化时置位,用于表示对象已被初始化;

    state_in_sysfs:1:表示kobject对象在sysfs中的状态,在对应目录中被创建则置1,否则为0;

    state_add_uevent_sent:1:添加设备的uevent事件是否发送标志,添加设备时会向用户空间发送uevent事件,请求新增设备;

    state_remove_uevent_sent:1:删除设备的uevent事件是否发送标志,删除设备时会向用户空间发送uevent事件,请求卸载设备。

    struct kobj_type定义了kobject的类型,该结构体既有操作的函数,也有默认的公共属性,该结构体定义如下:

    struct kobj_type {
        void (*release)(struct kobject *kobj);
        const struct sysfs_ops *sysfs_ops;
        struct attribute **default_attrs;
        const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj);
        const void *(*namespace)(struct kobject *kobj);
        void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t *gid);
    };

    结构体常用成员解释:

    release:函数指针,当引用计数为0时,在kobject释放时调用;

    sysfs_ops:定义了读写属性文件时调用的函数;

    default_attrs:定义了这类kobject默认属性,指向attribute数组的指针。

    struct sysfs_ops结构体是用于实现属性的的函数操作集,其定义如下所示:

    struct sysfs_ops {
        ssize_t    (*show)(struct kobject *, struct attribute *, char *);
        ssize_t    (*store)(struct kobject *, struct attribute *, const char *, size_t);
    };

    show:函数用于读取一个属性到用户空间,函数的第一个参数是要读取的kobject指针,它对应要读的目录,第二个参数是要读的属性,第三个参数存放读到的属性的缓冲区,当函数调用成功后,返回实际读取的数据长度;

    store:函数用于将属性写入到内核,函数第一个参数是与写相关的kobject指针,它对应要写的目录,第二个参数是要写的属性,第三个参数是要写入的数据,第四个参数是要写入的参数长度,这个长度不能超过PAGESIZE个字节大小,只有当拥有属性写权限时,才能调用store()函数。

    struct attribute定义了kobject的属性,该结构体定义如下:

    struct attribute {
        const char        *name;
        umode_t            mode;
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
        bool            ignore_lockdep:1;
        struct lock_class_key    *key;
        struct lock_class_key    skey;
    #endif
    };

    常用结构体成员解释:

    name:属性文件的名称,属性文件将在kobject的sysfs目录中显示;

    mode:属性文件的读写权限。

    struct kset可以看成是在kobject上的拓展,它包含了一个kobject的链表,可以方便地表示sysfs中目录与子目录的关系,该结构体定义如下:

    /**
     * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem.
     *
     * A kset defines a group of kobjects.  They can be individually
     * different "types" but overall these kobjects all want to be grouped
     * together and operated on in the same manner.  ksets are used to
     * define the attribute callbacks and other common events that happen to
     * a kobject.
     *
     * @list: the list of all kobjects for this kset
     * @list_lock: a lock for iterating over the kobjects
     * @kobj: the embedded kobject for this kset (recursion, isn't it fun...)
     * @uevent_ops: the set of uevent operations for this kset.  These are
     * called whenever a kobject has something happen to it so that the kset
     * can add new environment variables, or filter out the uevents if so
     * desired.
     */
    struct kset {
        struct list_head list;
        spinlock_t list_lock;
        struct kobject kobj;
        const struct kset_uevent_ops *uevent_ops;
    };

    结构体常用成员解释:

    list:用来挂在链表上的结构,包含在一个kset的所有kobject构成了一个双向循坏链表,list_head是这个链表的头部,这个链表用来连接第一个和最后一个kobject对象,第一个kobject使用entry连接kset集合以及第二个kobject对象,第二个kobject对象使用entry连接第一个kobject对象和第三个kobject对象,最终形成一个kobject对象的链表;

    list_lock:用于迭代kobjects的锁;

    kobj:归属于该kset的所有的kobject的共有parent,这个parent就是体现内核设备组织结构的关键,同时,kset的引用计数就是内嵌的kobject对象的引用计数;

    uevent_ops:此kset的uevent操作函数集。

    struct kobj_attribute是kobject在attribute上的拓展,添加了专门读写kobject_attribute属性的函数,结构体定义如下:

    struct kobj_attribute {
        struct attribute attr;
        ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr,
                char *buf);
        ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr,
                 const char *buf, size_t count);
    };

    结构体成员解释:

    attr:kobject的公共属性,包括名称和读写权限;

    show:函数指针,用于读取属性到用户空间;

    store:函数指针,用于用户空间写属性到内核。

    注意:无论是kobjec还是kset(说到底是kset内部的kobject),都提供了使用kobj_attribute的快速创建方法。

    3、kobject实现操作

    在Linux内核中提供了一系列kobject的实现方法,接下来,进行简要分析:

    /*
     * populate_dir - populate directory with attributes.
     * @kobj: object we're working on.
     *
     * Most subsystems have a set of default attributes that are associated
     * with an object that registers with them.  This is a helper called during
     * object registration that loops through the default attributes of the
     * subsystem and creates attributes files for them in sysfs.
     */
    static int populate_dir(struct kobject *kobj)
    {
        struct kobj_type *t = get_ktype(kobj);
        struct attribute *attr;
        int error = 0;
        int i;
    
        if (t && t->default_attrs) {
            for (i = 0; (attr = t->default_attrs[i]) != NULL; i++) {
                error = sysfs_create_file(kobj, attr);//在sysfs目录创建属性文件
                if (error)
                    break;
            }
        }
        return error;
    }
    
    static int create_dir(struct kobject *kobj)
    {
        const struct kobj_ns_type_operations *ops;
        int error;
    
        error = sysfs_create_dir_ns(kobj, kobject_namespace(kobj));//创建sysfs目录
        if (error)
            return error;
    
        error = populate_dir(kobj);//在sysfs目录中填充属性文件
        if (error) {
            sysfs_remove_dir(kobj);
            return error;
        }
    
        /*
         * @kobj->sd may be deleted by an ancestor going away.  Hold an
         * extra reference so that it stays until @kobj is gone.
         */
        sysfs_get(kobj->sd);//引用计数加1
    
        /*
         * If @kobj has ns_ops, its children need to be filtered based on
         * their namespace tags.  Enable namespace support on @kobj->sd.
         */
        ops = kobj_child_ns_ops(kobj);
        if (ops) {
            BUG_ON(ops->type <= KOBJ_NS_TYPE_NONE);
            BUG_ON(ops->type >= KOBJ_NS_TYPES);
            BUG_ON(!kobj_ns_type_registered(ops->type));
    
            sysfs_enable_ns(kobj->sd);
        }
    
        return 0;
    }

    上面两个函数中,create_dir()用于在sysfs中创建kobj相应的目录,populate_dir()创建kobj中默认属性对应的文件,create_dir()函数就是调用populate_dir()实现的。

    static int get_kobj_path_length(struct kobject *kobj)
    {
        int length = 1;
        struct kobject *parent = kobj;
    
        /* walk up the ancestors until we hit the one pointing to the
         * root.
         * Add 1 to strlen for leading '/' of each level.
         */
        do {
            if (kobject_name(parent) == NULL)
                return 0;
            length += strlen(kobject_name(parent)) + 1;
            parent = parent->parent;
        } while (parent);
        return length;
    }
    
    static void fill_kobj_path(struct kobject *kobj, char *path, int length)
    {
        struct kobject *parent;
    
        --length;
        for (parent = kobj; parent; parent = parent->parent) {
            int cur = strlen(kobject_name(parent));
            /* back up enough to print this name with '/' */
            length -= cur;
            strncpy(path + length, kobject_name(parent), cur);
            *(path + --length) = '/';
        }
    
        pr_debug("kobject: '%s' (%p): %s: path = '%s'
    ", kobject_name(kobj),
             kobj, __func__, path);
    }
    
    /**
     * kobject_get_path - generate and return the path associated with a given kobj and kset pair.
     *
     * @kobj:    kobject in question, with which to build the path
     * @gfp_mask:    the allocation type used to allocate the path
     *
     * The result must be freed by the caller with kfree().
     */
    char *kobject_get_path(struct kobject *kobj, gfp_t gfp_mask)
    {
        char *path;
        int len;
    
        len = get_kobj_path_length(kobj);
        if (len == 0)
            return NULL;
        path = kzalloc(len, gfp_mask);
        if (!path)
            return NULL;
        fill_kobj_path(kobj, path, len);
    
        return path;
    }

    在上面的三个函数中,前面两个函数是内部函数,get_kobj_path_length()函数用于获得kobj路径名的长度,fill_kobj_path()函数用于将kobj路径名填充到path缓冲区,然后将指针返回,kobject_get_path()函数就是调用这两个函数进行实现的。

    /* add the kobject to its kset's list */
    static void kobj_kset_join(struct kobject *kobj)
    {
        if (!kobj->kset)
            return;
    
        kset_get(kobj->kset);//引用计数加1
        spin_lock(&kobj->kset->list_lock);
        list_add_tail(&kobj->entry, &kobj->kset->list);//在链表尾部插入节点
        spin_unlock(&kobj->kset->list_lock);
    }
    
    /* remove the kobject from its kset's list */
    static void kobj_kset_leave(struct kobject *kobj)
    {
        if (!kobj->kset)
            return;
    
        spin_lock(&kobj->kset->list_lock);
        list_del_init(&kobj->entry);//链表删除节点
        spin_unlock(&kobj->kset->list_lock);
        kset_put(kobj->kset);//引用计数减1
    }

    上面两个函数的功能是相对的,kobj_kset_join()用于将kobj加入到kobj->kset的链表中,kobj_kset_leave()用于将kobj从kobj->kset的链表中删除。

    static void kobject_init_internal(struct kobject *kobj)
    {
        if (!kobj)
            return;
        kref_init(&kobj->kref);//引用计数初始化
        INIT_LIST_HEAD(&kobj->entry);//链表初始化
        kobj->state_in_sysfs = 0;
        kobj->state_add_uevent_sent = 0;
        kobj->state_remove_uevent_sent = 0;
        kobj->state_initialized = 1;
    }
    
    static int kobject_add_internal(struct kobject *kobj)
    {
        int error = 0;
        struct kobject *parent;
    
        if (!kobj)
            return -ENOENT;
    
        if (!kobj->name || !kobj->name[0]) {
            WARN(1, "kobject: (%p): attempted to be registered with empty "
                 "name!
    ", kobj);
            return -EINVAL;
        }
    
        parent = kobject_get(kobj->parent);//父kobject引用计数加1
    
        /* join kset if set, use it as parent if we do not already have one */
        if (kobj->kset) {
            if (!parent)
                parent = kobject_get(&kobj->kset->kobj);
            kobj_kset_join(kobj);
            kobj->parent = parent;//设置kobject的parent指针
        }
    
        pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s'
    ",
             kobject_name(kobj), kobj, __func__,
             parent ? kobject_name(parent) : "<NULL>",
             kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");
    
        error = create_dir(kobj);//在sysfs中创建目录
        if (error) {
            kobj_kset_leave(kobj);
            kobject_put(parent);
            kobj->parent = NULL;
    
            /* be noisy on error issues */
            if (error == -EEXIST)
                pr_err("%s failed for %s with -EEXIST, don't try to register things with the same name in the same directory.
    ",
                       __func__, kobject_name(kobj));
            else
                pr_err("%s failed for %s (error: %d parent: %s)
    ",
                       __func__, kobject_name(kobj), error,
                       parent ? kobject_name(parent) : "'none'");
        } else
            kobj->state_in_sysfs = 1;
    
        return error;
    }

    kobject_init_internal()函数用来初始化kobj,kobject_add_internal()函数用来将kobj加入已有的结构中去,这两个函数有密切的联系,在kobject结构体中有很多变量,但是重要的只有两个,一个是kset,一个是parent,这两个变量表示了kobject在整个体系中的位置,决不能自行决定,需要外部参与设置,kobject的创建过程分为init和add两个阶段。kobject_init_internal()把一些结构体变量进行初始化后,等外界设置了parent和kset后,再调用kobject_add_internal()把kobject添加到适当的位置,并创建相应的sysfs目录及文件。

    /**
     * kobject_set_name_vargs - Set the name of an kobject
     * @kobj: struct kobject to set the name of
     * @fmt: format string used to build the name
     * @vargs: vargs to format the string.
     */
    int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,
                      va_list vargs)
    {
        const char *s;
    
        if (kobj->name && !fmt)
            return 0;
    
        s = kvasprintf_const(GFP_KERNEL, fmt, vargs);
        if (!s)
            return -ENOMEM;
    
        /*
         * ewww... some of these buggers have '/' in the name ... If
         * that's the case, we need to make sure we have an actual
         * allocated copy to modify, since kvasprintf_const may have
         * returned something from .rodata.
         */
        if (strchr(s, '/')) {
            char *t;
    
            t = kstrdup(s, GFP_KERNEL);
            kfree_const(s);
            if (!t)
                return -ENOMEM;
            strreplace(t, '/', '!');
            s = t;
        }
        kfree_const(kobj->name);
        kobj->name = s;
    
        return 0;
    }
    
    /**
     * kobject_set_name - Set the name of a kobject
     * @kobj: struct kobject to set the name of
     * @fmt: format string used to build the name
     *
     * This sets the name of the kobject.  If you have already added the
     * kobject to the system, you must call kobject_rename() in order to
     * change the name of the kobject.
     */
    int kobject_set_name(struct kobject *kobj, const char *fmt, ...)
    {
        va_list vargs;
        int retval;
    
        va_start(vargs, fmt);
        retval = kobject_set_name_vargs(kobj, fmt, vargs);
        va_end(vargs);
    
        return retval;
    }

    kobject_set_name()函数的作用是设置kobj的名称,它通过调用kobject_set_name_vargs()来实现,需要注意的时,kobject_set_name()仅限于kobject添加到体系之前使用,因为该函数只是修改了名字,并未通知到用户空间。

    /**
     * kobject_init - initialize a kobject structure
     * @kobj: pointer to the kobject to initialize
     * @ktype: pointer to the ktype for this kobject.
     *
     * This function will properly initialize a kobject such that it can then
     * be passed to the kobject_add() call.
     *
     * After this function is called, the kobject MUST be cleaned up by a call
     * to kobject_put(), not by a call to kfree directly to ensure that all of
     * the memory is cleaned up properly.
     */
    void kobject_init(struct kobject *kobj, struct kobj_type *ktype)
    {
        char *err_str;
    
        if (!kobj) {
            err_str = "invalid kobject pointer!";
            goto error;
        }
        if (!ktype) {
            err_str = "must have a ktype to be initialized properly!
    ";
            goto error;
        }
        if (kobj->state_initialized) {
            /* do not error out as sometimes we can recover */
            printk(KERN_ERR "kobject (%p): tried to init an initialized "
                   "object, something is seriously wrong.
    ", kobj);
            dump_stack();
        }
    
        kobject_init_internal(kobj);
        kobj->ktype = ktype;
        return;
    
    error:
        printk(KERN_ERR "kobject (%p): %s
    ", kobj, err_str);
        dump_stack();
    }

    kobject_init()函数就是调用了kobject_init_internal()函数进行一些结构体变量初始化,然后又设置了ktype结构体成员,ktype的作用是管理一些默认属性。

    static int kobject_add_varg(struct kobject *kobj,
                           struct kobject *parent,
                           const char *fmt, va_list vargs)
    {
        int retval;
    
        retval = kobject_set_name_vargs(kobj, fmt, vargs);
        if (retval) {
            printk(KERN_ERR "kobject: can not set name properly!
    ");
            return retval;
        }
        kobj->parent = parent;
        return kobject_add_internal(kobj);
    }
    
    /**
     * kobject_add - the main kobject add function
     * @kobj: the kobject to add
     * @parent: pointer to the parent of the kobject.
     * @fmt: format to name the kobject with.
     *
     * The kobject name is set and added to the kobject hierarchy in this
     * function.
     *
     * If @parent is set, then the parent of the @kobj will be set to it.
     * If @parent is NULL, then the parent of the @kobj will be set to the
     * kobject associated with the kset assigned to this kobject.  If no kset
     * is assigned to the kobject, then the kobject will be located in the
     * root of the sysfs tree.
     *
     * If this function returns an error, kobject_put() must be called to
     * properly clean up the memory associated with the object.
     * Under no instance should the kobject that is passed to this function
     * be directly freed with a call to kfree(), that can leak memory.
     *
     * Note, no "add" uevent will be created with this call, the caller should set
     * up all of the necessary sysfs files for the object and then call
     * kobject_uevent() with the UEVENT_ADD parameter to ensure that
     * userspace is properly notified of this kobject's creation.
     */
    int kobject_add(struct kobject *kobj, struct kobject *parent,
            const char *fmt, ...)
    {
        va_list args;
        int retval;
    
        if (!kobj)
            return -EINVAL;
    
        if (!kobj->state_initialized) {
            printk(KERN_ERR "kobject '%s' (%p): tried to add an "
                   "uninitialized object, something is seriously wrong.
    ",
                   kobject_name(kobj), kobj);
            dump_stack();
            return -EINVAL;
        }
        va_start(args, fmt);
        retval = kobject_add_varg(kobj, parent, fmt, args);
        va_end(args);
    
        return retval;
    }

    kobject_add()函数用于将kobj添加到体系中去,但是该函数还有一个附加的功能,设置kobj的名字,parent作为参数被传进来。

    /**
     * kobject_init_and_add - initialize a kobject structure and add it to the kobject hierarchy
     * @kobj: pointer to the kobject to initialize
     * @ktype: pointer to the ktype for this kobject.
     * @parent: pointer to the parent of this kobject.
     * @fmt: the name of the kobject.
     *
     * This function combines the call to kobject_init() and
     * kobject_add().  The same type of error handling after a call to
     * kobject_add() and kobject lifetime rules are the same here.
     */
    int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,
                 struct kobject *parent, const char *fmt, ...)
    {
        va_list args;
        int retval;
    
        kobject_init(kobj, ktype);
    
        va_start(args, fmt);
        retval = kobject_add_varg(kobj, parent, fmt, args);
        va_end(args);
    
        return retval;
    }

    kobject_init_and_add()其实是kobjec_init()和kobject_add()的合并,将kobject初始化后并添加到kobject的层次结构中去。

    /**
     * kobject_rename - change the name of an object
     * @kobj: object in question.
     * @new_name: object's new name
     *
     * It is the responsibility of the caller to provide mutual
     * exclusion between two different calls of kobject_rename
     * on the same kobject and to ensure that new_name is valid and
     * won't conflict with other kobjects.
     */
    int kobject_rename(struct kobject *kobj, const char *new_name)
    {
        int error = 0;
        const char *devpath = NULL;
        const char *dup_name = NULL, *name;
        char *devpath_string = NULL;
        char *envp[2];
    
        kobj = kobject_get(kobj);
        if (!kobj)
            return -EINVAL;
        if (!kobj->parent)
            return -EINVAL;
    
        devpath = kobject_get_path(kobj, GFP_KERNEL);
        if (!devpath) {
            error = -ENOMEM;
            goto out;
        }
        devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
        if (!devpath_string) {
            error = -ENOMEM;
            goto out;
        }
        sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
        envp[0] = devpath_string;
        envp[1] = NULL;
    
        name = dup_name = kstrdup_const(new_name, GFP_KERNEL);
        if (!name) {
            error = -ENOMEM;
            goto out;
        }
    
        error = sysfs_rename_dir_ns(kobj, new_name, kobject_namespace(kobj));
        if (error)
            goto out;
    
        /* Install the new kobject name */
        dup_name = kobj->name;
        kobj->name = name;
    
        /* This function is mostly/only used for network interface.
         * Some hotplug package track interfaces by their name and
         * therefore want to know when the name is changed by the user. */
        kobject_uevent_env(kobj, KOBJ_MOVE, envp);
    
    out:
        kfree_const(dup_name);
        kfree(devpath_string);
        kfree(devpath);
        kobject_put(kobj);
    
        return error;
    }

    kobject_rename()函数实现的功能为,当kobj已经添加到系统后,可以使用此函数调用实现更改kobject的名字,它除了能完成kobject_set_name()的功能以外,还向用户空间通知这一消息。

    /**
     * kobject_move - move object to another parent
     * @kobj: object in question.
     * @new_parent: object's new parent (can be NULL)
     */
    int kobject_move(struct kobject *kobj, struct kobject *new_parent)
    {
        int error;
        struct kobject *old_parent;
        const char *devpath = NULL;
        char *devpath_string = NULL;
        char *envp[2];
    
        kobj = kobject_get(kobj);
        if (!kobj)
            return -EINVAL;
        new_parent = kobject_get(new_parent);
        if (!new_parent) {
            if (kobj->kset)
                new_parent = kobject_get(&kobj->kset->kobj);
        }
    
        /* old object path */
        devpath = kobject_get_path(kobj, GFP_KERNEL);
        if (!devpath) {
            error = -ENOMEM;
            goto out;
        }
        devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
        if (!devpath_string) {
            error = -ENOMEM;
            goto out;
        }
        sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
        envp[0] = devpath_string;
        envp[1] = NULL;
        error = sysfs_move_dir_ns(kobj, new_parent, kobject_namespace(kobj));
        if (error)
            goto out;
        old_parent = kobj->parent;
        kobj->parent = new_parent;
        new_parent = NULL;
        kobject_put(old_parent);
        kobject_uevent_env(kobj, KOBJ_MOVE, envp);
    out:
        kobject_put(new_parent);
        kobject_put(kobj);
        kfree(devpath_string);
        kfree(devpath);
        return error;
    }

    kobjec_move()函数实现的功能是在kobj添加到系统后,调用此函数能将kobj移动到新的parent下,同时会通知用户空间。

    /**
     * kobject_del - unlink kobject from hierarchy.
     * @kobj: object.
     */
    void kobject_del(struct kobject *kobj)
    {
        struct kernfs_node *sd;
    
        if (!kobj)
            return;
    
        sd = kobj->sd;
        sysfs_remove_dir(kobj);
        sysfs_put(sd);
    
        kobj->state_in_sysfs = 0;
        kobj_kset_leave(kobj);
        kobject_put(kobj->parent);
        kobj->parent = NULL;
    }

    kobject_del()函数用于将kobj从系统中删除,和kobject_add()是相对的操作。

    /**
     * kobject_get - increment refcount for object.
     * @kobj: object.
     */
    struct kobject *kobject_get(struct kobject *kobj)
    {
        if (kobj) {
            if (!kobj->state_initialized)
                WARN(1, KERN_WARNING "kobject: '%s' (%p): is not "
                       "initialized, yet kobject_get() is being "
                       "called.
    ", kobject_name(kobj), kobj);
            kref_get(&kobj->kref);
        }
        return kobj;
    }
    /*
     * kobject_cleanup - free kobject resources.
     * @kobj: object to cleanup
     */
    static void kobject_cleanup(struct kobject *kobj)
    {
        struct kobj_type *t = get_ktype(kobj);
        const char *name = kobj->name;
    
        pr_debug("kobject: '%s' (%p): %s, parent %p
    ",
             kobject_name(kobj), kobj, __func__, kobj->parent);
    
        if (t && !t->release)
            pr_debug("kobject: '%s' (%p): does not have a release() "
                 "function, it is broken and must be fixed.
    ",
                 kobject_name(kobj), kobj);
    
        /* send "remove" if the caller did not do it but sent "add" */
        if (kobj->state_add_uevent_sent && !kobj->state_remove_uevent_sent) {
            pr_debug("kobject: '%s' (%p): auto cleanup 'remove' event
    ",
                 kobject_name(kobj), kobj);
            kobject_uevent(kobj, KOBJ_REMOVE);
        }
    
        /* remove from sysfs if the caller did not do it */
        if (kobj->state_in_sysfs) {
            pr_debug("kobject: '%s' (%p): auto cleanup kobject_del
    ",
                 kobject_name(kobj), kobj);
            kobject_del(kobj);
        }
    
        if (t && t->release) {
            pr_debug("kobject: '%s' (%p): calling ktype release
    ",
                 kobject_name(kobj), kobj);
            t->release(kobj);
        }
    
        /* free name if we allocated it */
        if (name) {
            pr_debug("kobject: '%s': free name
    ", name);
            kfree_const(name);
        }
    }
    
    #ifdef CONFIG_DEBUG_KOBJECT_RELEASE
    static void kobject_delayed_cleanup(struct work_struct *work)
    {
        kobject_cleanup(container_of(to_delayed_work(work),
                         struct kobject, release));
    }
    #endif
    
    static void kobject_release(struct kref *kref)
    {
        struct kobject *kobj = container_of(kref, struct kobject, kref);
    #ifdef CONFIG_DEBUG_KOBJECT_RELEASE
        unsigned long delay = HZ + HZ * (get_random_int() & 0x3);
        pr_info("kobject: '%s' (%p): %s, parent %p (delayed %ld)
    ",
             kobject_name(kobj), kobj, __func__, kobj->parent, delay);
        INIT_DELAYED_WORK(&kobj->release, kobject_delayed_cleanup);
    
        schedule_delayed_work(&kobj->release, delay);
    #else
        kobject_cleanup(kobj);
    #endif
    }
    
    /**
     * kobject_put - decrement refcount for object.
     * @kobj: object.
     *
     * Decrement the refcount, and if 0, call kobject_cleanup().
     */
    void kobject_put(struct kobject *kobj)
    {
        if (kobj) {
            if (!kobj->state_initialized)
                WARN(1, KERN_WARNING "kobject: '%s' (%p): is not "
                       "initialized, yet kobject_put() is being "
                       "called.
    ", kobject_name(kobj), kobj);
            kref_put(&kobj->kref, kobject_release);
        }
    }

    kobject_get()和kobject_put()函数完成的是kobject的引用计数功能,kobject_put()函数在当引用计数为0时,撤销整个kobject的存在:向用户空间发送REMOVE信息,从sysfs中删除相应的目录,并调用ktype中定义的release函数,并释放name所占用的空间。kobject_cleanup()函数用来释放kobject创建时所分配的资源。

    上述提到到API接口,基本上概括了kobject从创建到删除,包括kobject的名字修改、位置修改以及引用计数的变动等功能。但是,kobject的创建仍然比较麻烦,因为ktype需要自己去实现,下面是Linux内核中为kobject提供的一种快速创建的方法:

    首先是kobject的属性文件的读写函数定义:

    /* default kobject attribute operations */
    static ssize_t kobj_attr_show(struct kobject *kobj, struct attribute *attr,
                      char *buf)
    {
        struct kobj_attribute *kattr;
        ssize_t ret = -EIO;
    
        kattr = container_of(attr, struct kobj_attribute, attr);
        if (kattr->show)
            ret = kattr->show(kobj, kattr, buf);
        return ret;
    }
    
    static ssize_t kobj_attr_store(struct kobject *kobj, struct attribute *attr,
                       const char *buf, size_t count)
    {
        struct kobj_attribute *kattr;
        ssize_t ret = -EIO;
    
        kattr = container_of(attr, struct kobj_attribute, attr);
        if (kattr->store)
            ret = kattr->store(kobj, kattr, buf, count);
        return ret;
    }
    
    const struct sysfs_ops kobj_sysfs_ops = {
        .show    = kobj_attr_show,
        .store    = kobj_attr_store,
    };

    然后是,kobject的释放函数,以及kobj_type结构体变量的定义,如下:

    static void dynamic_kobj_release(struct kobject *kobj)
    {
        pr_debug("kobject: (%p): %s
    ", kobj, __func__);
        kfree(kobj);
    }
    
    static struct kobj_type dynamic_kobj_ktype = {
        .release    = dynamic_kobj_release,
        .sysfs_ops    = &kobj_sysfs_ops,
    };

    这是Linux内核里面为kobject自身提供的一种kobj_type,名称叫做dynamic_kobj_type,它并没有提供默认的属性,但是提供了release函数和访问属性的方法。

    /**
     * kobject_create - create a struct kobject dynamically
     *
     * This function creates a kobject structure dynamically and sets it up
     * to be a "dynamic" kobject with a default release function set up.
     *
     * If the kobject was not able to be created, NULL will be returned.
     * The kobject structure returned from here must be cleaned up with a
     * call to kobject_put() and not kfree(), as kobject_init() has
     * already been called on this structure.
     */
    struct kobject *kobject_create(void)
    {
        struct kobject *kobj;
    
        kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
        if (!kobj)
            return NULL;
    
        kobject_init(kobj, &dynamic_kobj_ktype);
        return kobj;
    }
    
    /**
     * kobject_create_and_add - create a struct kobject dynamically and register it with sysfs
     *
     * @name: the name for the kobject
     * @parent: the parent kobject of this kobject, if any.
     *
     * This function creates a kobject structure dynamically and registers it
     * with sysfs.  When you are finished with this structure, call
     * kobject_put() and the structure will be dynamically freed when
     * it is no longer being used.
     *
     * If the kobject was not able to be created, NULL will be returned.
     */
    struct kobject *kobject_create_and_add(const char *name, struct kobject *parent)
    {
        struct kobject *kobj;
        int retval;
    
        kobj = kobject_create();
        if (!kobj)
            return NULL;
    
        retval = kobject_add(kobj, parent, "%s", name);
        if (retval) {
            printk(KERN_WARNING "%s: kobject_add error: %d
    ",
                   __func__, retval);
            kobject_put(kobj);
            kobj = NULL;
        }
        return kobj;
    }

    在kobject_create()和kobject_create_add()函数中,使用了dynamic_kobj_ktype这个结构体变量,这是一种很好的偷懒方式,因为release()函数会释放掉kobj,所以这里的kobj必须是动态创建的,这里的kobject_create()和kobject_init()相对,kobject_create_and_add()和kobject_init_and_add()相对。需要注意的是,这里创建的kobject无法嵌入到其它结构,是独立存在的,所以用到的地方很少。

    /**
     * kset_init - initialize a kset for use
     * @k: kset
     */
    void kset_init(struct kset *k)
    {
        kobject_init_internal(&k->kobj);
        INIT_LIST_HEAD(&k->list);
        spin_lock_init(&k->list_lock);
    }

    kset_init()函数用于将kset结构体初始化,和kobject初始化类似。

    /**
     * kset_register - initialize and add a kset.
     * @k: kset.
     */
    int kset_register(struct kset *k)
    {
        int err;
    
        if (!k)
            return -EINVAL;
    
        kset_init(k);
        err = kobject_add_internal(&k->kobj);
        if (err)
            return err;
        kobject_uevent(&k->kobj, KOBJ_ADD);
        return 0;
    }

    kset_register()函数用来初始化并添加到kset,函数比较简单,它负责将kset中的kobject添加到系统,并向用户空间发布KOBJ_ADD消息,所以在调用之前,需要先设置好k->kobj.name、k->kobj.parent和k->kobj.kset这些成员。

    /**
     * kset_unregister - remove a kset.
     * @k: kset.
     */
    void kset_unregister(struct kset *k)
    {
        if (!k)
            return;
        kobject_del(&k->kobj);
        kobject_put(&k->kobj);
    }

    kset_unregister()和kset_register()函数功能是相对的,用于移除kset,并减少引用计数。

    /**
     * kset_find_obj - search for object in kset.
     * @kset: kset we're looking in.
     * @name: object's name.
     *
     * Lock kset via @kset->subsys, and iterate over @kset->list,
     * looking for a matching kobject. If matching object is found
     * take a reference and return the object.
     */
    struct kobject *kset_find_obj(struct kset *kset, const char *name)
    {
        struct kobject *k;
        struct kobject *ret = NULL;
    
        spin_lock(&kset->list_lock);
    
        list_for_each_entry(k, &kset->list, entry) {
            if (kobject_name(k) && !strcmp(kobject_name(k), name)) {
                ret = kobject_get_unless_zero(k);
                break;
            }
        }
    
        spin_unlock(&kset->list_lock);
        return ret;
    }

    kset_find_obj()函数功能为通过从kset的链表中寻找名为name的kobject,实现了链表的遍历。

    与kobject类似,kset也提供看一种kobj_type,名称为kset_ktype,实现如下:

    static void kset_release(struct kobject *kobj)
    {
        struct kset *kset = container_of(kobj, struct kset, kobj);
        pr_debug("kobject: '%s' (%p): %s
    ",
             kobject_name(kobj), kobj, __func__);
        kfree(kset);
    }
    
    void kset_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
    {
        if (kobj->parent)
            kobject_get_ownership(kobj->parent, uid, gid);
    }
    
    static struct kobj_type kset_ktype = {
        .sysfs_ops    = &kobj_sysfs_ops,
        .release    = kset_release,
        .get_ownership    = kset_get_ownership,
    };
    
    /**
     * kset_create - create a struct kset dynamically
     *
     * @name: the name for the kset
     * @uevent_ops: a struct kset_uevent_ops for the kset
     * @parent_kobj: the parent kobject of this kset, if any.
     *
     * This function creates a kset structure dynamically.  This structure can
     * then be registered with the system and show up in sysfs with a call to
     * kset_register().  When you are finished with this structure, if
     * kset_register() has been called, call kset_unregister() and the
     * structure will be dynamically freed when it is no longer being used.
     *
     * If the kset was not able to be created, NULL will be returned.
     */
    static struct kset *kset_create(const char *name,
                    const struct kset_uevent_ops *uevent_ops,
                    struct kobject *parent_kobj)
    {
        struct kset *kset;
        int retval;
    
        kset = kzalloc(sizeof(*kset), GFP_KERNEL);
        if (!kset)
            return NULL;
        retval = kobject_set_name(&kset->kobj, "%s", name);
        if (retval) {
            kfree(kset);
            return NULL;
        }
        kset->uevent_ops = uevent_ops;
        kset->kobj.parent = parent_kobj;
    
        /*
         * The kobject of this kset will have a type of kset_ktype and belong to
         * no kset itself.  That way we can properly free it when it is
         * finished being used.
         */
        kset->kobj.ktype = &kset_ktype;
        kset->kobj.kset = NULL;
    
        return kset;
    }
    
    /**
     * kset_create_and_add - create a struct kset dynamically and add it to sysfs
     *
     * @name: the name for the kset
     * @uevent_ops: a struct kset_uevent_ops for the kset
     * @parent_kobj: the parent kobject of this kset, if any.
     *
     * This function creates a kset structure dynamically and registers it
     * with sysfs.  When you are finished with this structure, call
     * kset_unregister() and the structure will be dynamically freed when it
     * is no longer being used.
     *
     * If the kset was not able to be created, NULL will be returned.
     */
    struct kset *kset_create_and_add(const char *name,
                     const struct kset_uevent_ops *uevent_ops,
                     struct kobject *parent_kobj)
    {
        struct kset *kset;
        int error;
    
        kset = kset_create(name, uevent_ops, parent_kobj);
        if (!kset)
            return NULL;
        error = kset_register(kset);
        if (error) {
            kfree(kset);
            return NULL;
        }
        return kset;
    }

    kset_create()和kset_create_and_add()就是使用kset_type来快速创建kset的函数,当需要在sysfs中创建单纯的目录时,可以使用这两个函数进行创建。

    static inline struct kset *to_kset(struct kobject *kobj)
    {
        return kobj ? container_of(kobj, struct kset, kobj) : NULL;
    }
    
    static inline struct kset *kset_get(struct kset *k)
    {
        return k ? to_kset(kobject_get(&k->kobj)) : NULL;
    }
    
    static inline void kset_put(struct kset *k)
    {
        kobject_put(&k->kobj);
    }
    
    static inline struct kobj_type *get_ktype(struct kobject *kobj)
    {
        return kobj->ktype;
    }

    上面这些函数是在kobject.h文件里面的内联函数,to_kset()函数通过kobj的指针获取kset结构体的首地址,kset_get()和kset_put()为引用计数操作,get_ktype()函数用于获取kobject的ktype类型。

    4、 kobject的层次结构

    内核用kobject结构将各个对象连接起来组成一个分层的结构体系,从而与模型化的子系统相匹配。kobject结构体中的parent指针成员、kset指针成员和链表list_head实现了kobject的层次结构,parent指针最重要的用途是在sysfs分层结构中定位对象,下图是一个简单的kobject、kset的分层结构图:

    5、小节

    本文主要对kobject结构体以及相关的结构体以及Linux内核提供的相关API做了简要介绍,kobject结构体和设备驱动模型和sysfs的实现密切相关,必须深刻理解。

    参考:

    https://blog.csdn.net/yuanmengliang/article/details/52700529

    https://blog.csdn.net/qb_2008/article/details/6846779

    https://www.cnblogs.com/xiaojiang1025/p/6193959.html

    《LINUX设备驱动程序(第三版)》

  • 相关阅读:
    [Learn AF3]第二章 App Framework 3.0的组件View——AF3的驱动引擎
    [Learn AF3]第一章 如何使用App Framework 3.0 构造应用程序
    [译]Intel App Framework 3.0的变化
    手机浏览器中屏蔽img的系统右键菜单context menu
    HTML5 touche vents drag to move & AF actionsheet by longTap
    HTML5 FileReader
    【转】Gulp入门基础教程
    【Intel AF 2.1 学习笔记三】
    【Intel AF 2.1 学习笔记二】AF中的页面——Panel
    【Intel AF 2.1 学习笔记一】AF程序结构
  • 原文地址:https://www.cnblogs.com/Cqlismy/p/11414191.html
Copyright © 2020-2023  润新知