首先我们可以发现除了第一个人, 其他人都会坐在已入坐人的旁边。
难点在于计算方案数。。 我们可以从外往里把确定的人用组合数算上去,然后缩小范围。
#include<bits/stdc++.h> #define LL long long #define LD long double #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ull unsigned long long using namespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int power(int a, int b) { int ans = 1; while(b) { if(b & 1) ans = 1LL * ans * a % mod; a = 1LL * a * a % mod; b >>= 1; } return ans; } int inv[N], Finv[N], F[N]; void init() { inv[1] = F[0] = Finv[0] = 1; for(int i = 2; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod; for(int i = 1; i < N; i++) F[i] = 1LL * F[i - 1] * i % mod; for(int i = 1; i < N; i++) Finv[i] = 1LL * Finv[i - 1] * inv[i] % mod; } int comb(int n, int m) { if(n < m || n < 0) return 0; return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod; } int n, a[N], prefix[N]; int solve(int L, int R) { if(prefix[L - 1] == prefix[R]) return power(2, R - L); int p, q; for(p = L; p <= R; p++) if(a[p] != 0) break; for(q = R; q >= L; q--) if(a[q] != 0) break; if(p == q && a[p] == 1) return comb(R - L, p - L); int ans = 0; if(a[p] >= a[q]) { int L2 = p, R2 = L2 + a[p] - 1; if(R2 >= q && R2 <= R) add(ans, 1LL * solve(L2 + 1, R2) * comb(R - L - R2 + L2, L2 - L) % mod); } if(a[q] >= a[p]) { int R2 = q, L2 = R2 - a[q] + 1; if(L2 >= L && L2 <= p) add(ans, 1LL * solve(L2, R2 - 1) * comb(R - L - R2 + L2, L2 - L) % mod); } return ans; } int main() { init(); scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); for(int i = 1; i <= n; i++) prefix[i] = prefix[i - 1] + (a[i] != 0); printf("%d ", solve(1, n)); return 0; } /* */