• HDU 1695 GCD(求两区间的互质数对+容斥原理)


    Description

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs. 
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same. 

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input

    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. 
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above. 
     

    Output

    For each test case, print the number of choices. Use the format in the example. 
     

    Sample Input

    2 1 3 1 5 1 1 11014 1 14409 9
     

    Sample Output

    Case 1: 9 Case 2: 736427

    Hint

    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5). 

    b,d除于k,转化为求互质对
    用容斥原理求出所有不互质的数对数,再用整数减去!

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <vector>
    #include <cstring>
    
    using namespace std;
    
    #define LL long long
    #define N 111111
    
    int a,b,c,d,k;
    LL ans;
    vector<int> prime[N];
    bool vis[N];
    
    void init(){
        memset(vis,false,sizeof vis);
        for(int i=0;i<=N;i++) prime[i].clear();
        for(int i=2;i<=N;i+=2) prime[i].push_back(2);//这样快很多
        for(int i=3;i<=N;i+=2) if(!vis[i]){
            for(int j=i;j<=N;j+=i){
                prime[j].push_back(i);vis[j]=true;
            }
        }
    }
    
    void fun(int x,LL y,int z){
        LL v = 1,cnt=0;
        for(int i=0;i<prime[x].size();i++){
            if(1<<i&y){
                v*=prime[x][i];
                cnt++;
            }
        }
        if(cnt&1) ans-=z/v;
        else ans+=z/v;
    }
    
    
    int main()
    {
        init();int _,o;scanf("%d",&_);o=_;
        while(_--){
            printf("Case %d: ",o-_);ans=0;
            scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
            if(!k) {puts("0");continue;}
            b/=k,d/=k;int z;if(d<b) z=d,d=b,b=z;
            for(int i=1;i<=d;i++){
                int k = min(i,b);ans+=k;//保证不重复
                for(LL j=1;j<(1<<prime[i].size());j++) fun(i,j,k);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    

      



  • 相关阅读:
    swoole 安装方法 使用即时聊天
    git的介绍以及简单应用
    curl的应用
    linux下监听和同步代码配置
    mac skim 修改背景色
    php 编译安装的一个 configure 配置
    mac mysql error You must reset your password using ALTER USER statement before executing this statement.
    yii2 控制器里 action 大小写组合造成的路由问题
    warning : json_decode(): option JSON_BIGINT_AS_STRING not implemented in xxx
    redis 自启动脚本
  • 原文地址:https://www.cnblogs.com/BugClearlove/p/4705465.html
Copyright © 2020-2023  润新知