• PAT 1127 ZigZagging on a Tree[难]


    1127 ZigZagging on a Tree (30 分)

    Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine to print the numbers in level-order. However, if you think the problem is too simple, then you are too naive. This time you are supposed to print the numbers in "zigzagging order" -- that is, starting from the root, print the numbers level-by-level, alternating between left to right and right to left. For example, for the following tree you must output: 1 11 5 8 17 12 20 15.

    zigzag.jpg

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the inorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the zigzagging sequence of the tree in a line. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input:

    8
    12 11 20 17 1 15 8 5
    12 20 17 11 15 8 5 1
    

    Sample Output:

    1 11 5 8 17 12 20 15

     题目大意:给出二叉树的中根遍历和后根遍历序列,给出zigzag遍历序列,就是隔层从左到右,从右到左这样转换遍历。

    //这个我当然是不会了,好久没做二叉树的题目了。

    转自:https://www.liuchuo.net/archives/3758

    #include <iostream>
    #include <vector>
    #include <queue>
    #include<cstdio>
    using namespace std;
    vector<int> in, post, result[35];
    int n, tree[35][2], root;
    struct node {
        int index, depth;//保存index和深度。
    };
    //将二叉树的结构存储在了tree中。
    void dfs(int &index, int inLeft, int inRight, int postLeft, int postRight) {
        if (inLeft > inRight) return;
        index = postRight;//进来之后再赋值,真的厉害。
        int i = 0;
        while (in[i] != post[postRight]) i++;
        dfs(tree[index][0], inLeft, i - 1, postLeft, postLeft + (i - inLeft) - 1);
        dfs(tree[index][1], i + 1, inRight, postLeft + (i - inLeft), postRight - 1);
    }
    //dfs函数得到的root实际上是post遍历中的下标。
    void bfs() {
        queue<node> q;
        q.push(node{root, 0});
        while (!q.empty()) {
            node temp = q.front();
            q.pop();
            result[temp.depth].push_back(post[temp.index]);
            if (tree[temp.index][0] != 0)//左子树不为空。
                q.push(node{tree[temp.index][0], temp.depth + 1});
            //那么此时push进的是左子树,并且深度+1.
            if (tree[temp.index][1] != 0)//右子树不为空。
                q.push(node{tree[temp.index][1], temp.depth + 1});
        }
    }
    int main() {
        cin >> n;
        in.resize(n + 1), post.resize(n + 1);
        for (int i = 1; i <= n; i++) cin >> in[i];//输入中序遍历
        for (int i = 1; i <= n; i++) cin >> post[i];//输入后序遍历
        dfs(root, 1, n, 1, n);//将根存在了root中。
        bfs();
        printf("%d", result[0][0]);
        for (int i = 1; i < 35; i++) {
            if (i % 2 == 1) {
                for (int j = 0; j < result[i].size(); j++)
                    printf(" %d", result[i][j]);
            } else {
                for (int j = result[i].size() - 1; j >= 0; j--)
                    printf(" %d", result[i][j]);
            }
        }
        return 0;
    }

    //柳神真厉害。

    1.使用dfs在遍历的过程中传进去index引用参数,直接赋值,并且使用tree二维数组存储二叉树的结构

    2.使用结构体node,存储下标和层数,下标是在post序列中可以寻到节点的。

    3.对奇数层和偶数层,分别用不同的方式打印。

    代码来自:https://www.cnblogs.com/chenxiwenruo/p/6506517.html

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <string.h>
    #include <string>
    #include <map>
    #define LEFT 0
    #define RIGHT 1
    using namespace std;
    const int maxn=35;
    int inorder[maxn];
    int postorder[maxn];
    int level[maxn][maxn]; //每层的节点id
    int levelcnt[maxn]; //每层的节点个数
    int maxlayer=0;
    int cnt=0; //节点id
    struct Node{
        int left=-1,right=-1;
        int val;
    }node[maxn];
    
    //根据中序遍历和后序遍历建立树
    void build(int inL,int inR,int postL,int postR,int fa,int LorR){
        if(inL>inR)
            return;
        int val=postorder[postR];
        int idx;
        //在中序遍历中找出父亲节点的索引,其左边是左子树,右边是右子树
        for(int i=inL;i<=inR;i++){
            if(inorder[i]==val){
                idx=i;
                break;
            }
        }
        int lnum=idx-inL;//左子树的节点个数
        cnt++;
        node[cnt].val=val;
        if(LorR==LEFT)
            node[fa].left=cnt;
        else if(LorR==RIGHT)
            node[fa].right=cnt;
        int tmp=cnt;
        build(inL,idx-1,postL,postL+lnum-1,tmp,LEFT);
        //这里的left标志是当前深度遍历中是左子树还是右子树。
        build(idx+1,inR,postL+lnum,postR-1,tmp,RIGHT);
    }
    void dfs(int root,int layer){
        if(root==-1)
            return;
        maxlayer=max(layer,maxlayer);
        level[layer][levelcnt[layer]]=root;
        levelcnt[layer]++;
        dfs(node[root].left,layer+1);
        dfs(node[root].right,layer+1);
    }
    int main()
    {
        int n;
        cin>>n;
        for(int i=1;i<=n;i++)
            cin>>inorder[i];
        for(int i=1;i<=n;i++)
            cin>>postorder[i];
        build(1,n,1,n,-1,-1);
        dfs(1,1);
        bool flag=true;
        printf("%d",node[1].val);
        for(int i=2;i<=maxlayer;i++){
            if(flag){
                for(int j=0;j<levelcnt[i];j++)
                    printf(" %d",node[level[i][j]].val);
            }
            else{
                for(int j=levelcnt[i]-1;j>=0;j--)
                    printf(" %d",node[level[i][j]].val);
            }
            flag=!flag;
        }
        return 0;
    }

    1.这个是使用函数建树,具体的代码理解在代码里。

  • 相关阅读:
    as
    android 手势上下滑动头部自动隐藏View标签
    ListView 禁止滑动和点击
    Android corners 圆角属性各个版本之间兼容问题
    Android 解耦利器 EventBus
    Android 修改Activity标题样式 actionBar
    JavaScript 的写的grid Ajax加载数据 表格内增删改查 支持自定义分页大小 支持批量删除数据,支持按住ctrl多选
    Andorid 应用程序开启多进程
    比较两个文件是否相同(计算MD5效验码比较方式)
    Android 文件上传支持拍照录用录视频
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/9972884.html
Copyright © 2020-2023  润新知