• 利用torch.nn实现前馈神经网络解决 二分类 任务


    1 导入包

    import torch 
    import torch.nn as nn
    from torch.utils.data import TensorDataset,DataLoader
    from torch.nn import init
    import torch.optim as optim
    from sklearn.model_selection import train_test_split
    import numpy as np
    import matplotlib.pyplot as plt

    2 创建数据

    num_inputs,num_example = 200,10000
    x1 = torch.normal(2,1,(num_example,num_inputs))
    y1 = torch.ones((num_example,1))
    x2 = torch.normal(-2,1,(num_example,num_inputs))
    y2 = torch.zeros((num_example,1))
    x_data = torch.cat((x1,x2),dim=0)
    y_data = torch.cat((y1,y2),dim = 0)
    train_x,test_x,train_y,test_y = train_test_split(x_data,y_data,shuffle=True,test_size=0.3,stratify=y_data)

    3 加载数据

    batch_size = 256
    train_dataset = TensorDataset(train_x,train_y)
    train_iter = DataLoader(
        dataset = train_dataset,
        shuffle = True,
        num_workers = 0,
        batch_size = batch_size
    )
    test_dataset = TensorDataset(test_x,test_y)
    test_iter = DataLoader(
        dataset = test_dataset,
        shuffle = True,
        num_workers = 0,
        batch_size = batch_size
    )

    4 模型定义

    num_input,num_hidden,num_output = 200,256,1
    class net(nn.Module):
        def __init__(self,num_input,num_hidden,num_output):
            super(net,self).__init__()
            self.linear1 = nn.Linear(num_input,num_hidden,bias =False)
            self.linear2 = nn.Linear(num_hidden,num_output,bias=False)
        def forward(self,input):
            out = self.linear1(input)
            out = self.linear2(out)
            return out

    5 模型初始化

    model = net(num_input,num_hidden,num_output)
    print(model)
    for param in model.parameters():
        init.normal_(param,mean=0,std=0.001)

    6 定义训练函数

    lr = 0.001
    loss = nn.BCEWithLogitsLoss()
    optimizer = optim.SGD(model.parameters(),lr)
    def train(net,train_iter,test_iter,loss,num_epochs,batch_size):
        train_ls,test_ls,train_acc,test_acc = [],[],[],[]
        for epoch in range(num_epochs):
            train_ls_sum,train_acc_sum,n = 0,0,0
            for x,y in train_iter:
                y_pred = model(x)
                l = loss(y_pred,y)
                optimizer.zero_grad()
                l.backward()
                optimizer.step()
                train_ls_sum +=l.item()
                train_acc_sum += (((y_pred>0.5)==y)+0.0).sum().item()
                n += y_pred.shape[0]
            train_ls.append(train_ls_sum)
            train_acc.append(train_acc_sum/n)
            
            test_ls_sum,test_acc_sum,n = 0,0,0
            for x,y in test_iter:
                y_pred = model(x)
                l = loss(y_pred,y)
                test_ls_sum +=l.item()
                test_acc_sum += (((y_pred>0.5)==y)+0.0).sum().item()
                n += y_pred.shape[0]
            test_ls.append(test_ls_sum)
            test_acc.append(test_acc_sum/n)
            print('epoch %d, train_loss %.6f,test_loss %f, train_acc %.6f,test_acc %f'
                  %(epoch+1, train_ls[epoch],test_ls[epoch], train_acc[epoch],test_acc[epoch]))
        return train_ls,test_ls,train_acc,test_acc
           

    7 训练

    #训练次数和学习率
    num_epochs = 10
    train_loss,test_loss,train_acc,test_acc = train(model,train_iter,test_iter,loss,num_epochs,batch_size)

    8 可视化

    x = np.linspace(0,len(train_loss),len(train_loss))
    plt.plot(x,train_loss,label="train_loss",linewidth=1.5)
    plt.plot(x,test_loss,label="test_loss",linewidth=1.5)
    
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.legend()
    plt.show()
  • 相关阅读:
    法里数列
    母函数笔记
    贝尔数的指数母函数推导
    jQuery监听文本框值改变触发事件(propertychange)
    java-->TreeMap的使用
    查找-->二分查找和插值查找java实现
    查找-->斐波那契查找算法
    排序-->归并排序
    希尔排序(交换法和位移法)
    8皇后算法的简单实现(回溯)
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15977852.html
Copyright © 2020-2023  润新知