• HDU 6189 Law of Commutation


    传送门

    题意:

    给出(n,a)解满足(a^bequiv b^a(mod~~2^n))(b的整数解个数)

    解题思路:

    分奇偶讨论(a),可以发现在该模条件下(a)(b)同奇偶,当(a)为奇数的时候,暴力跑了下大概只有在(b=a)的情况下等式成立

    那么讨论在(a,b)为偶数的情况

    (ageq n)时,显然(b^a)(2^n)的倍数,那么(a^bequiv b^aequiv 0(mod~~2^n))

    再分类讨论一波,当(bgeq n)时,所有的偶数(b)必然满足条件,对于其他的(b<n)暴力跑就好了,毕竟(n)只有30

    (a<n)时,再次讨论(b)的情况,当(bgeq n)时,要求的是(b^aequiv0(mod~2^n))的方案数

    (b^a=k2^n,kin Z^+)

    那么每个(b)至少包含(lceilfrac{n}{a} ceil)(2)的因子,即(b)(2^{lceilfrac{n}{a} ceil})的倍数求在区间(nleq bleq2^n)的方案数即可,(b<n)仍旧暴力

    代码

    #include <bits/stdc++.h>
    #include <ext/pb_ds/assoc_container.hpp>
    #include <ext/pb_ds/hash_policy.hpp>
    #include <ext/pb_ds/tree_policy.hpp>
    #include <ext/pb_ds/trie_policy.hpp>
    using namespace __gnu_pbds;
    using namespace std;
    // freopen("k.in", "r", stdin);
    // freopen("k.out", "w", stdout);
    // clock_t c1 = clock();
    // std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    mt19937 rnd(time(NULL));
    #define de(a) cout << #a << " = " << a << endl
    #define rep(i, a, n) for (int i = a; i <= n; i++)
    #define per(i, a, n) for (int i = n; i >= a; i--)
    #define ls ((x) << 1)
    #define rs ((x) << 1 | 1)
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    typedef pair<char, char> PCC;
    typedef pair<ll, ll> PLL;
    typedef vector<int> VI;
    #define inf 0x3f3f3f3f
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    const int MAXN = 1e6 + 7;
    const int MAXM = 4e5 + 7;
    const ll MOD = 1e9 + 7;
    const double eps = 1e-7;
    const double pi = acos(-1.0);
    ll quick_pow(ll a, ll b, ll mod)
    {
        ll ans = 1;
        while (b)
        {
            if (b & 1)
                ans = (1LL * ans * a) % mod;
            a = (1LL * a * a) % mod;
            b >>= 1;
        }
        return ans;
    }
    int main()
    {
        ll n, a;
        while (~scanf("%lld%lld", &n, &a))
        {
            ll ans = 0;
            ll mod = 1 << n;
            if (a & 1)
                printf("1
    ");
            else if (a >= n)
            {
                ans += mod / 2 - (n - 1) / 2;
                for (int i = 2; i < n; i += 2)
                    if (quick_pow(a, i, mod) == quick_pow(i, a, mod))
                        ans++;
                printf("%lld
    ", ans);
            }
            else
            {
                ll temp = quick_pow(2, ceil(1.0 * n / a), mod);
                ans += mod / temp - (n - 1) / temp;
                for (int i = 2; i < n; i += 2)
                    if (quick_pow(a, i, mod) == quick_pow(i, a, mod))
                        ans++;
                printf("%lld
    ", ans);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    《从零开始学Swift》学习笔记(Day 45)——重写方法
    《从零开始学Swift》学习笔记(Day 44)——重写属性
    浅析Android中ndk-build支持的参数
    texstudio on ubuntu 12.04
    arm上的参数列表传递的分析(以android为例)
    编译错误
    native method与so中function的关联
    Java.lang.NoClassDefFoundError--找不到相应的类
    Sublime Text 3 文档
    JNI 函数注册与管理
  • 原文地址:https://www.cnblogs.com/graytido/p/13741713.html
Copyright © 2020-2023  润新知