小希的迷宫
Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Yes
Yes
No
思路:
使用并查集或者DFS判断图中是否有环形成,在函数union_set 里面一旦两个节点父节点一致即形成了环,输出No。满足以下要求输出Yes:
1.无环
2.根节点就一个
初代版本:(这说明循环数组比迭代器快多了)
#include <iostream>
#include <cstring>
#include <set>
using namespace std;
const int maxn = 1e5+10;
int pre[maxn];
int vis[maxn];
bool flag;
int maxnum;
void init() {
for (int i=0; i<maxn; i++) pre[i] = i;
memset(vis,0,sizeof vis);
flag = true;
}
int find(int x) {
if (x == pre[x]) return x;
return pre[x] = find(pre[x]);
}
void merge(int a,int b) {
int ra = find(a);
int rb = find(b);
if (ra == rb)
flag = false;//形成环
else
pre[ra] = rb;
}
int main() {
init();
int u,v;
set<int>st;
while ( scanf("%d%d",&u,&v) ) {
if ( u == -1 && v == -1 ) return 0;
if ( u == 0 && v == 0 ) {
int cnt = 0;
for (set<int>::iterator it = st.begin(); it != st.end(); it++) {
if (vis[*it] && pre[*it] == *it) cnt++;
}
// for (int i=1; i<=maxnum; i++)
// if (vis[i] && pre[i] == i) cnt++;
if (flag && cnt<=1)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
init();
st.clear();
continue;
}
st.insert(u);st.insert(v);
vis[u] = 1;
vis[v] = 1;
if (u != v) merge(u,v);
}
return 0;
}
更新版本:想着每次初始化得循环1e+5次,于是使用了vector初始化,结果速度还慢了。
#include <iostream>
#include <cstring>
#include <set>
#include <vector>
using namespace std;
const int maxn = 1e5+10;
int pre[maxn];
bool flag;
int find(int x) {
if (x == pre[x]) return x;
return pre[x] = find(pre[x]);
}
void merge(int a,int b) {
int ra = find(a);
int rb = find(b);
if (ra == rb)
flag = false;//形成环
else
pre[ra] = rb;
}
int main() {
flag = true;
int u,v;
set<int>st;
vector<int> vec;
while ( scanf("%d%d",&u,&v) ) {
//测试数据结束
if ( u == -1 && v == -1 ) return 0;
if ( u == 0 && v == 0 ) {
//初始化pre数组
for (set<int>::iterator it = st.begin(); it != st.end(); it++) {
pre[*it] =*it;
}
//合并
for (vector<int>::iterator vit=vec.begin() ; vit !=vec.end(); vit++){
int u1 = *vit;
vit++;
int v1 =*vit;
if (u1 != v1) merge(u1,v1);
}
int cnt = 0;
//判断联通图的个数
for (set<int>::iterator it = st.begin(); it != st.end(); it++) {
if (pre[*it] == *it) cnt++;
}
if (flag && cnt<=1)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
flag = true;
st.clear();
vec.clear();
continue;
}
vec.push_back(u);
vec.push_back(v);
st.insert(u);
st.insert(v);
}
}