• POJ 2533 Longest Ordered Subsequence(LIS模版题)


    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 47465   Accepted: 21120

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2< ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4

    题目链接:POJ 2533

    LIS模版题,N2和N*logN两种写法

    N2代码:

    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<bitset>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(x,y) memset(x,y,sizeof(x))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e3+10;
    int arr[N],mx[N];
    void init()
    {
        CLR(arr,0);
        CLR(mx,0);
    }
    int main(void)
    {
        int n,i,j,pre_len;
        while (~scanf("%d",&n))
        {
            init();
            for (i=1; i<=n; ++i)
                scanf("%d",&arr[i]);
            mx[1]=1;
            for (i=2; i<=n; ++i)
            {
                pre_len=0;
                for (j=1; j<i; ++j)
                {
                    if(arr[j]<arr[i])//arr[i]可以接到arr[j]后面
                        if(mx[j]>pre_len)//接到一个具有最长LIS的后面。
                            pre_len=mx[j];
                }
                mx[i]=pre_len+1;
            }
            printf("%d
    ",*max_element(mx+1,mx+1+n));
        }
        return 0;
    }
    

    NlogN代码:

    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<bitset>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(x,y) memset(x,y,sizeof(x))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e3+10;
    int arr[N],d[N];
    void init()
    {
        CLR(arr,0);
        CLR(d,0);
    }
    int main(void)
    {
        int n,i,j,mxlen;
        while (~scanf("%d",&n))
        {
            init();
            for (i=1; i<=n; ++i)
                scanf("%d",&arr[i]);
    
            mxlen=1;
            d[mxlen]=arr[mxlen];
    
            for (i=2; i<=n; ++i)
            {
                if(d[mxlen]<arr[i])
                    d[++mxlen]=arr[i];//最好情况一直往后增长
                else
                {
                    int pos=lower_bound(d,d+mxlen,arr[i])-d;//用二分找到一个下界可放置位置
                    d[pos]=arr[i];
                }
            }
            printf("%d
    ",mxlen);
        }
        return 0;
    }
  • 相关阅读:
    XML解析
    资源管理
    Android中的动态字符串的处理
    消息提示的三种方式
    程序调控和监视(Logcat,Debug)
    选择改变事件OnCheckedChange
    递归和非递归分别实现求n的阶乘
    递归和非递归分别实现strlen
    编写一个函数 reverse_string(char * string)实现:将参数字符串中的字符反向排列 。(递归实现)
    写一个递归函数DigitSum(n),输入一个非负整数,返回组成它的数字之和
  • 原文地址:https://www.cnblogs.com/Blackops/p/5853673.html
Copyright © 2020-2023  润新知