题目:
A message containing letters from A-Z
is being encoded to numbers using the following mapping:
'A' -> 1 'B' -> 2 ... 'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message "12"
, it could be decoded as "AB"
(1 2) or "L"
(12).
The number of ways decoding "12"
is 2.
题解:
这个题与之前的爬楼梯有些类似,只是有了0和26的限制判断。
Solution 1 ()
class Solution { public: int numDecodings(string s) { if(s.empty() || s.size()>1 && s.front() == '0') return 0; vector<int> dp(s.size()+1, 0); dp[0] = 1; for(int i=1; i<dp.size(); i++) { if(s[i-1] == '0') dp[i] = 0; else dp[i] = dp[i-1]; if(i>1 && (s[i-2] == '1' || s[i-1] <= '6' && s[i-2] == '2')) dp[i] += dp[i-2]; } return dp.back(); } };
Solution 2 ()
class Solution { public: int numDecodings(string s) { if(s.empty() || s.front() == '0') return 0; // r2: decode ways of s[i-2] , r1: decode ways of s[i-1] int r1 = 1, r2 = 1; for(int i=1; i<s.size(); i++) { // zero voids ways of the last because zero cannot be used separately if(s[i] == '0') r1 = 0; // possible two-digit letter, so new r1 is sum of both while new r2 is the old r1 if(s[i-1] == '1' || s[i-1] == '2' && s[i] <= '6') { r1 = r2 + r1; r2 = r1 - r2; } // one-digit letter, no new way added else r2 = r1; } return r1; } };