• Poj1050_To the Max(二维数组最大字段和)



    一、Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    is in the lower left corner:

    9 2
    -4 1
    -1 8
    and has a sum of 15.

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.
    二、题解
            这个题目怎么说呢,说难不难,说不难呢也花了我一天时间。刚开始的时候没什么思路,看到有讨论说是DP。但看了想了好久,也没找到状态转换方程,因为有不定长的X,Y的情况。在纠结了片刻后,我决定暴力解决,采用最简单的枚举方法,写出来我自己的惊呆了,O(N^6)。天啊,想了一下一定过不了。果然,TLE了。又想了几刻钟,看了下讨论,发现了一种不错的思路,把二维数组压缩成一维数组,然后再求最大子段和。这个压缩过程其实就是把第i+1行依次加到第i(0<= i <=n-1)行然后求最大子段和,记录最大值就OK了。

    三、java代码
    import java.util.Scanner;
    
     public class Main {
    	 static int  n;  
    	   
    	 static int MaxSub (int a[], int N){  
    	     int  max, i;  
    	     int[] dp=new int [n]; 
    	     max = dp[0] = a[0];  
    	     for (i=1; i<N; i++){  
    	         if (dp[i-1] > 0)  
    	             dp[i] = dp[i-1] + a[i];  
    	         else  
    	             dp[i] = a[i];  
    	         if (dp[i] > max)  
    	             max = dp[i];  
    	     }  
    	     return max;  
    	 }  
    	 public static void main(String[] args) {
    		 Scanner cin=new Scanner(System.in);
    	     int i, j, k, Max, m;  
    	     n=cin.nextInt();
    	     int[][] a =new int [n][n];
    	    
    	     for (i=0; i<n; i++)  {  
    	         for (j=0; j<n; j++){  
    	             a[i][j]=cin.nextInt();
    	         }  
    	     }  
    	     
    	     Max = Integer.MIN_VALUE;  
    	     for (i=0; i<n; i++){  
    	         m = MaxSub(a[i], n);  
    	         if (m > Max)
    	        	 Max = m;  
    	         for (j=i+1; j<n; j++){  
    	             for (k=0; k<n; k++){  
    	                 a[i][k] += a[j][k];  
    	             }  
    	             m = MaxSub(a[i], n);  
    	             if (m > Max)
    	            	 Max = m;  
    	         }  
    	     }  
    	     System.out.print(Max);  
    	 }  
    }


    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    为什么需要链路追踪
    Nacos Config 多环境的配置
    Nacos Config 客户端的使用
    Nacos Config 服务端初始化
    使用路由网关的全局过滤功能
    什么是 Spring Cloud Gateway
    c# 第五节 第一个控制台程序、第一个桌面、快捷键、注释
    c# 第四节 Net Framework编写应用程序的过程
    c# 第三节 vs的安装
    c# 第二节 c#的常用IDE环境
  • 原文地址:https://www.cnblogs.com/AndyDai/p/4734192.html
Copyright © 2020-2023  润新知