题意:
有n个点, 给了企鹅能跳的最大距离,然后给定每个点的能够起跳的最大次数,以及初始每个点上的企鹅个数,求企鹅能够跳到一起的点。
思路:
因为有了对点限制,所以要拆点,用一条容量为最大次数的边连接两点,然后建图,枚举每一个汇点,如果最大流等于企鹅个数则该点可以作为汇合点,记下答案。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <vector>
#include <algorithm>
#include <queue>
#include <map>
#include <stack>
#include <string>
#include <math.h>
#include <bitset>
#include <ctype.h>
using namespace std;
typedef pair<int,int> P;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-9;
const int N = 5000 + 5;
const int mod = 1e9 + 7;
int t, kase = 0;
int n, S, T, m;
int sum = 0;
double dist;
struct Node
{
int x,y,cnt,cap;
}p[N];
double getdist(int i, int j)
{
return sqrt((p[i].x - p[j].x)*(p[i].x - p[j].x) +
(p[i].y - p[j].y)*(p[i].y - p[j].y));
}
struct Edge
{
int u, v, flow, cap;
Edge(){}
Edge(int a, int b, int c, int d):u(a), v(b), cap(c), flow(d){}
};
struct Dinic
{
int n;
vector<int> G[N];
vector<Edge> edges;
int cur[N], vis[N], d[N];
void init(int n)
{
this->n = n;
for(int i = 0; i <= n; i++) G[i].clear();
edges.clear();
}
void addEdge(int u, int v, int cap)
{
edges.push_back(Edge(u, v, cap, 0));
edges.push_back(Edge(v, u, 0, 0));
int m = edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
bool BFS(int s, int t)
{
queue<int> Q;
Q.push(s);
memset(vis, 0, sizeof(vis));
d[s] = 0;
vis[s] = 1;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = 0; i < (int)G[u].size(); i++)
{
Edge &e = edges[G[u][i]];
int v = e.v;
if(vis[v]) continue;
if(e.cap > e.flow)
{
vis[v] = 1;
d[v] = d[u] + 1;
Q.push(v);
}
}
}
return vis[t];
}
int DFS(int x, int a, int t)
{
if(x == t || a == 0) return a;
int f, flow = 0;
for(int &i = cur[x]; i < G[x].size(); i++)
{
Edge &e = edges[G[x][i]];
int v = e.v;
if(d[v] == d[x] + 1 && (f = DFS(v, min(e.cap-e.flow, a), t)) > 0)
{
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a <= 0) break;
}
}
return flow;
}
int MaxFlow(int s, int t)
{
int flow = 0;
while(BFS(s, t))
{
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF, t);
}
return flow;
}
}dinic;
int main()
{
scanf("%d", &t);
while(t--)
{
scanf("%d%lf", &n, &dist);
vector<int> ans;
sum = 0;
for(int i = 0; i < n; i++)
{
scanf("%d%d%d%d", &p[i].x, &p[i].y, &p[i].cnt, &p[i].cap);
sum += p[i].cnt;
}
for(int k = 0; k < n; k++)
{
dinic.init(2*n+2);
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(i == j) continue;
if(getdist(i,j) <= dist)
{
dinic.addEdge(i+n, j, p[i].cap);
}
}
}
for(int i = 0; i < n; i++)
dinic.addEdge(i, i+n, p[i].cap);
int S = n*2, T = k;
for(int i = 0; i < n; i++)
dinic.addEdge(S, i, p[i].cnt);
if(sum == dinic.MaxFlow(S,T)) ans.push_back(k);
}
printf("Case %d:", ++kase);
if(ans.size() == 0)
printf(" %d", -1);
else
for(int i = 0; i < ans.size(); i++)
printf(" %d", ans[i]);
printf("
");
}
return 0;
}