• UVa 10969 (圆与圆之间的覆盖问题) Sweet Dream


    题意:

    有n个按先后顺序放置的不同大小不同位置的圆,求所有可见圆弧的长度。

    分析:

    这道题应该是大白书上例题 LA 2572 (求可见圆盘的数量) Kanazawa 的加强版,整体框架都差不多。

    对于每个圆求出与其他圆相交的交点所对应的幅角(转化到[0, 2π]中),排个序,然后枚举每段弧的终点,如果不被后面放置的圆所覆盖则可见。

    注意:

    原本以为WA是精度问题,后来调大调小都一直WA,这里精度eps从1e-11到1e-13都没问题。

    但是在判断弧的终点是否被圆所覆盖的时候要加上等号。也就是第64行代码中是<=而非<,一直被这个给坑惨了。

    UVa的数据真的好强啊,Orz

      1 #include <cstdio>
      2 #include <cmath>
      3 #include <vector>
      4 #include <algorithm>
      5 using namespace std;
      6 
      7 const int maxn = 100 + 10;
      8 const double eps = 1e-11;
      9 const double PI = acos(-1.0);
     10 const double TWO_PI = 2.0 * PI;
     11 double radius[maxn];
     12 
     13 double NormalizeAngle(double ang)
     14 { return ang - TWO_PI*floor(ang/TWO_PI); }
     15 
     16 int dcmp(double x)
     17 {
     18     if(fabs(x) < eps) return 0;
     19     return x < 0 ? -1 : 1;
     20 }
     21 
     22 struct Point
     23 {
     24     double x, y;
     25     Point(double x=0, double y=0):x(x), y(y) {}
     26 }p[maxn];
     27 typedef Point Vector;
     28 
     29 bool operator == (const Point& A, const Point& B)
     30 { return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; }
     31 
     32 Point operator - (const Point& A, const Point& B)
     33 { return Point(A.x - B.x, A.y - B.y); }
     34 
     35 double Dot(const Point& A, const Point& B)
     36 { return A.x*B.x + A.y*B.y; }
     37 
     38 double Length(const Vector& A)
     39 { return sqrt(Dot(A, A)); }
     40 
     41 double Angle(const Vector& A)
     42 { return atan2(A.y, A.x); }
     43 
     44 void GetCCIntersection(const Point& c1, double r1, const Point& c2, double r2, vector<double>& rad)
     45 {
     46     double d = Length(c1 - c2);
     47     if(dcmp(d) == 0) return;
     48     if(dcmp(d-r1-r2) > 0) return;
     49     if(dcmp(d-fabs(r1-r2)) < 0) return;
     50 
     51     double base = Angle(c2 - c1);
     52     double ang = acos((r1*r1 + d*d - r2*r2) / (2.0*r1*d));
     53     rad.push_back(NormalizeAngle(base + ang));
     54     rad.push_back(NormalizeAngle(base - ang));
     55 }
     56 
     57 int n;
     58 
     59 bool isVisible(const Point& C, int id)
     60 {
     61     for(int i = id + 1; i < n; ++i)
     62     {
     63         double d = Length(C - p[i]);
     64         if(dcmp(d - radius[i]) <= 0) return false;    //这道题的关键所在 
     65     }
     66     return true;
     67 }
     68 
     69 int main(void)
     70 {
     71     //freopen("10969in.txt", "r", stdin);
     72     int T;
     73     scanf("%d", &T);
     74     while(T--)
     75     {
     76         scanf("%d", &n);
     77         for(int i = 0; i < n; ++i) scanf("%lf%lf%lf", &radius[i], &p[i].x, &p[i].y);
     78         
     79         double sum = 0.0;
     80         for(int i = 0; i < n; ++i)
     81         {
     82             vector<double> rad;
     83             rad.push_back(0.0);
     84             rad.push_back(TWO_PI);
     85             for(int j = 0; j < n; ++j)
     86             {
     87                 if(j == i) continue;
     88                 GetCCIntersection(p[i], radius[i], p[j], radius[j], rad);
     89             }
     90             sort(rad.begin(), rad.end());
     91             
     92             for(int j = 0; j < rad.size() - 1; ++j)
     93             {
     94                 double mid = (rad[j] + rad[j + 1]) / 2;
     95                 double ang = rad[j + 1] - rad[j];
     96                 Point C(p[i].x + radius[i]*cos(mid), p[i].y + radius[i]*sin(mid));
     97                 if(isVisible(C, i)) sum += radius[i] * ang;
     98             }
     99         }
    100 
    101         printf("%.3f
    ", sum);
    102     }
    103 
    104     return 0;
    105 }
    代码君
  • 相关阅读:
    BSP与HAL关系(转)
    [Advanced Algorithm]
    [Advanced Algorithm]
    [Advanced Algorithm]
    [Intermediate Algorithm]
    [Intermediate Algorithm]
    [Intermediate Algorithm]
    [Intermediate Algorithm]
    [Intermediate Algorithm]
    [Advanced Algorithm]
  • 原文地址:https://www.cnblogs.com/AOQNRMGYXLMV/p/4149042.html
Copyright © 2020-2023  润新知