这个问题姑且也叫做最大子矩阵吧
给一个树状图,求一个最大面积的子矩阵
思路是这样的,对于每个单位矩阵,求出左边连续不比它低的矩阵的下标,放在l数组里
同样,再求出右边连续的不比它低的矩阵的下标
这样,对于每个单个矩阵所能得到的最大面积就是 (r[i]-l[i]+1)*a[i]
1 //#define LOCAL 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 using namespace std; 6 7 const int maxn = 100000 + 5; 8 long long a[maxn], l[maxn], r[maxn]; 9 10 int main(void) 11 { 12 #ifdef LOCAL 13 freopen("1506in.txt", "r", stdin); 14 #endif 15 16 long long n; 17 while(scanf("%I64d", &n) == 1 && n) 18 { 19 long long ans = -1; 20 long long i, t; 21 for(i = 1; i <= n; ++i) 22 scanf("%I64d", &a[i]); 23 l[1] = 1; 24 r[n] = n; 25 for(i = 2; i <= n; ++i) 26 { 27 t = i; 28 while(t > 1 && a[i] <= a[t-1]) 29 t = l[t-1]; 30 l[i] = t; 31 } 32 for(i = n-1; i > 0; --i) 33 { 34 t = i; 35 while(t < n && a[i] <= a[t+1]) 36 t = r[t+1]; 37 r[i] = t; 38 } 39 long long temp; 40 for(i = 1; i <= n; ++i) 41 { 42 temp = (r[i]-l[i]+1)*a[i]; 43 ans = max(ans, temp); 44 } 45 printf("%I64d ", ans); 46 } 47 return 0; 48 }