TPOT是一个开源的机器学习项目,项目地址为:https://github.com/EpistasisLab/tpot
1. TPOT with code
step 1: 导入类模块
from tpot import TPOTClassifier #分类器 from tpot import TPOTRegressor #回归器
step 2: 实例化(default)
#创建默认分类器 default_pipeline_optimizer_classifier = TPOTClassifier() #创建默认回归器 default_pipeline_optimizer_regressor = TPOTRegressor()
step 2: 实例化(custom)
#创建自定义分类器 custom_pipeline_optimezer_classifier = TPOTClassifier(generations=50,population_size=50,cv=5,random_state=100, verbosity=2) #创建自定义回归器 custom_pipeline_optimezer_regressor =TPOTRegressor(generations=5,population_size=5,cv=5,random_state=20, verbosity=1)
step 3: 准备训练集、测试集 X_train, y_train, X_test, y_test = ? #可以使用sklearn.model_selection.train_test_split()函数 step 4: 训练 custom_pipeline_optimezer_regressor.fit(X_train, y_train) step 5: 测试 print(custom_pipeline_optimezer_regressor.score(X_test, y_test)) step 6: export the corresponding Python code for the optimized pipeline custom_pipeline_optimezer_regressor.export('tpot_exported_pipeline.py')
2.scoring function
方式一:pass a string to the attribute scoring
属性值可以为
'accuracy', 'adjusted_rand_score', 'average_precision', 'balanced_accuracy',
'f1','f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'neg_log_loss', 'neg_mean_absolute_error',
'neg_mean_squared_error', 'neg_median_absolute_error', 'precision', 'precision_macro', 'precision_micro',
'precision_samples', 'precision_weighted','r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples',
'recall_weighted', 'roc_auc', 'my_module.scorer_name*'
方式二:用户自定义
# Make a custom metric function def my_scoring_func(y_true, y_pred): return mean_squared_error(y_true, y_pred) # Make a custom a scorer from the custom metric function # Note: greater_is_better=False in make_scorer below would mean that the scoring function should be minimized. my_scorer = sklearn.metrics.scorer.make_scorer(my_scoring_func,greater_is_better=False)
custom_pipeline_optimezer_regressor =TPOTRegressor(generations=5,population_size=5,cv=5,random_state=20, verbosity=1,scoring=my_scorer)
3.config_dict
有四个默认的configuration options
- Default TPOT
- TPOT light
- TPOT MDR
- TPOT sparse
具体说明:http://epistasislab.github.io/tpot/using/#built-in-tpot-configurations
custom_pipeline_optimezer_regressor =TPOTRegressor(generations=5,population_size=5,cv=5,random_state=20, verbosity=1,config_dict='TPOT light')
4.用户自定义config
tpot_config = { 'sklearn.naive_bayes.GaussianNB': { }, 'sklearn.naive_bayes.BernoulliNB': { 'alpha': [1e-3, 1e-2, 1e-1, 1., 10., 100.], 'fit_prior': [True, False] }, 'sklearn.naive_bayes.MultinomialNB': { 'alpha': [1e-3, 1e-2, 1e-1, 1., 10., 100.], 'fit_prior': [True, False] } }
custom_pipeline_optimezer_regressor =TPOTRegressor(generations=5,population_size=5,cv=5,random_state=20, verbosity=1,config_dict=tpot_config)
5.分布式环境训练
from sklearn.externals import joblib import distributed.joblib from dask.distributed import Client # connect to the cluster client = Client('schedueler-address') # create the estimator normally estimator = TPOTClassifier(n_jobs=-1) # perform the fit in this context manager with joblib.parallel_backend("dask"): estimator.fit(X, y)
6.实际项目(回归问题)
项目目标是预测下游水库的进水量,其源数据内容如下,共有2161条记录
第一列是下游水库的进水量,第二列是上游水库的出水量,其余的是上下游之间降雨观测点的雨量信息 . 现只考虑上下游进出水量之间的影响,预测下游水库的进水量。
两者的趋势如下图
完整代码
from tpot import TPOTClassifier from tpot import TPOTRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics.scorer import make_scorer from sklearn.externals import joblib from sklearn.ensemble import RandomForestRegressor from sklearn.grid_search import GridSearchCV #import distributed.joblib from dask.distributed import Client from dask.distributed import LocalCluster import numpy as np import matplotlib.pyplot as plt import pandas as pd def get_train_test_by_OP(data,offset,period): xiaoxi_out = data[:,1] zhexi_in = data[:,0] size = len(zhexi_in) source_xiaoxi_out=[[] for i in range(period)] source_zhexi_in = [[] for i in range(period)] for i in range(period): source_xiaoxi_out[i]=xiaoxi_out[i :size-offset-period+i] source_zhexi_in[i] = zhexi_in[i+offset:size-period+i] data_vec = np.hstack((np.array(source_xiaoxi_out).transpose(1,0), np.array(source_zhexi_in).transpose(1,0))) label = zhexi_in[offset+period:] X, _X, y , _y = train_test_split(data_vec,label,test_size=0.1,random_state=13) return X, y , _X, _y def my_scoring_func(y_true,y_pred): return (sum((y_true - y_pred)**2)/len(y_true)) custom_pipeline_optimezer_regressor =TPOTRegressor(generations=5,population_size=5,cv=5,random_state=20, verbosity=2,scoring=my_scorer) data = np.array(pd.read_csv('seasons/2015_spring.csv',header=None)) X, y ,_X, _y = get_train_test_by_OP(data,54,44) custom_pipeline_optimezer_regressor.fit(X, y) print(custom_pipeline_optimezer_regressor.score(_X, _y)) custom_pipeline_optimezer_regressor.export('tpot_exported_pipeline.py')
结果如下
训练完成后,TPOT已经给出了最佳模型及其参数信息,我们可以这些信息建模预测,分析结果
model = RandomForestRegressor(bootstrap=True, max_features=0.4, min_samples_leaf=7, min_samples_split=4, n_estimators=100) model.fit(X,y) pre = model.predict(_X) mse = mean_squared_error(_y, pre) plt.figure(figsize=(8,5)) plt.plot(_y) plt.plot(pre) plt.legend(('true','predict')) plt.title('mse:'+str(mse)) plt.show()
可见,效果不错。当然我们也可以用grid_searh来调参
tuned_parameters = [{'max_features':[i/10 for i in range(1,10)], 'min_samples_leaf':[i for i in range(1,10)], 'bootstrap':[True,False], 'min_samples_split':[i for i in range(2,10)], 'n_estimators':[i for i in range(80,150)], 'max_features':[i/10 for i in range(1,10)]}] clf = GridSearchCV(RandomForestRegressor(),tuned_parameters) clf.fit(X,y) pre = model.predict(_X) print(mean_squared_error(_y, pre)) print(clf.best_estimator_)
上面我们用到的是2015年春季的数据训练的模型,我们希望该模型能准确预测春季下游水库的进水量。为此,利用该模型预测2018年春季的下游水库进水量,看其是否达到一个很好的效果。结果如下
可以看到,预测效果较好。
7.mnist手写数字识别(分类问题)
from tpot import TPOTClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split digits = load_digits() X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, train_size=0.75, test_size=0.25) pipeline_optimizer = TPOTClassifier(generations=5, population_size=50, cv=5, random_state=42, verbosity=2,n_jobs=6) pipeline_optimizer.fit(X_train, y_train) print(pipeline_optimizer.score(X_test, y_test)) pipeline_optimizer.export('tpot_exported_pipeline_classifier.py')
结果如下
最终的准确度达到了0.991111111111,由于笔者电脑硬件限制,跑起来有些吃力,大家可尝试将generations, population_size的值增大,观察跑的结果
8. 总结
由两次实验的结果可见,无论是回归问题还是分类问题,TPOT都可以为我们寻找一个比较优秀的解决方案,但是整个训练过程比较费时,对硬件资源要求较高。总的说来,这是一个非常优秀的机器学习工具。