• 机器学习算法使用


    # coding=gbk
    
    import time
    from sklearn import metrics
    import pickle as pickle
    import pandas as pd
    '''实现对'NB', 'KNN', 'LR', 'trees', 'tree', 'SVM','SVMCV'模型的简单调用。'''
    
    # Multinomial Naive Bayes Classifier
    '''
    nb
    '''
    def naive_bayes_classifier(train_x, train_y):
        from sklearn.naive_bayes import MultinomialNB
        model = MultinomialNB(alpha=0.01)
        model.fit(train_x, train_y)
        return model
    
    
    # KNN Classifier
    '''
    knn
    '''
    def knn_classifier(train_x, train_y):
        from sklearn.neighbors import KNeighborsClassifier
        model = KNeighborsClassifier()
        model.fit(train_x, train_y)
        return model
    
    
    '''
    logic
    '''
    # Logistic Regression Classifier
    def logistic_regression_classifier(train_x, train_y):
        from sklearn.linear_model import LogisticRegression
        model = LogisticRegression(penalty='l2')
        model.fit(train_x, train_y)
        return model
    
    
    '''
    决策树森林
    '''
    # Random Forest Classifier
    def random_forest_classifier(train_x, train_y):
        from sklearn.ensemble import RandomForestClassifier
        model = RandomForestClassifier(n_estimators=8)
        model.fit(train_x, train_y)
        return model
    
    '''
    tree
    '''
    # Decision Tree Classifier
    def decision_tree_classifier(train_x, train_y):
        from sklearn import tree
        model = tree.DecisionTreeClassifier()
        model.fit(train_x, train_y)
        return model
    
    '''
    gbdt
    '''
    # GBDT(Gradient Boosting Decision Tree) Classifier
    def gradient_boosting_classifier(train_x, train_y):
        from sklearn.ensemble import GradientBoostingClassifier
        model = GradientBoostingClassifier(n_estimators=200)
        model.fit(train_x, train_y)
        return model
    
    '''svm
    '''
    from sklearn.grid_search import GridSearchCV
    from sklearn.svm import SVC
    # SVM Classifier
    def svm_classifier(train_x, train_y):
        from sklearn.svm import SVC
        model = SVC(kernel='rbf', probability=True)
        model.fit(train_x, train_y)
        return model
    
    '''
    基于交叉验证的svm
    '''
    
    # SVM Classifier using cross validation
    def svm_cross_validation(train_x, train_y):
        model = SVC(kernel='rbf', probability=True)
        param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
        grid_search = GridSearchCV(model, param_grid, n_jobs=1, verbose=1)
        grid_search.fit(train_x, train_y)
        best_parameters = grid_search.best_estimator_.get_params()
        for para, val in list(best_parameters.items()):
            print(para, val)
        model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
        model.fit(train_x, train_y)
        return model
    
    
    def read_data(data_file):
        data = pd.read_csv(data_file)
        #划分数据集,90%训练集,10%测试集
        train = data[:int(len(data) * 0.9)]
        test = data[int(len(data) * 0.9):]
        '''
        train_x:训练集不带标签
        train_y:训练集标签
        test_x:测试集不带标签
        test_y:测试集标签
        '''
        train_y = train.label
        train_x = train.drop('label', axis=1)
        test_y = test.label
        test_x = test.drop('label', axis=1)
        return train_x, train_y, test_x, test_y
    
    
    if __name__ == '__main__':
        data_file = "train.csv"
        thresh = 0.5
        model_save_file = None
        model_save = {}
    
        test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'SVMCV', 'GBDT']
        classifiers = {'NB': naive_bayes_classifier,
                       'KNN': knn_classifier,
                       'LR': logistic_regression_classifier,
                       'RF': random_forest_classifier,
                       'DT': decision_tree_classifier,
                       'SVM': svm_classifier,
                       'SVMCV': svm_cross_validation,
                       'GBDT': gradient_boosting_classifier
                       }
    
        print('reading training and testing data...')
        train_x, train_y, test_x, test_y = read_data(data_file)
    
        for classifier in test_classifiers:
            print('******************* %s ********************' % classifier)
            start_time = time.time()
            model = classifiers[classifier](train_x, train_y)
            print('training took %fs!' % (time.time() - start_time))
            predict = model.predict(test_x)
            if model_save_file != None:
                model_save[classifier] = model
            precision = metrics.precision_score(test_y, predict)
            recall = metrics.recall_score(test_y, predict)
            print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
            accuracy = metrics.accuracy_score(test_y, predict)
            print('accuracy: %.2f%%' % (100 * accuracy))
    
        if model_save_file != None:
            pickle.dump(model_save, open(model_save_file, 'wb'))

                                                                                                                                                                                                                                                                                                                                                                   

  • 相关阅读:
    iis 部署网站常见问题
    提高你开发效率的十五个Visual Studio 2010使用技巧
    SQL SERVER 错误代码 0x534
    SQL Server2005修改计算机名后不能发布订阅
    Fedora桌面系统Idea中的部分中文无法显示解决
    最近去滴滴面试的一道题:斐波拉契数列非递归实现
    二叉查找树之红黑树
    二叉查找树之AVL树
    二叉查找树
    再看SpringMVC通过一个DispatcherServlet处理Servlet
  • 原文地址:https://www.cnblogs.com/51python/p/10463342.html
Copyright © 2020-2023  润新知