学习线段树合并,以这道题为契机
多谢这篇博客
这里是通过对线段树合并时,顺手统计了对于一颗子树内,是否反转两种情况的逆序对数
这里只对代码进行详细分析,见注解好了
1 #include<cstdio> 2 #include<algorithm> 3 #define N 210000*30 4 #define ll long long 5 using namespace std; 6 int n,tmp,ls[N],rs[N],data[N],tot; 7 ll ans,res1,res2; 8 int newtree(int l,int r,int x){//树的区间是[l,r],其中只有x有值 9 data[++tot]=1; 10 if(l==r)return tot; 11 int mid=(l+r)/2,node=tot; 12 if(x<=mid)ls[node]=newtree(l,mid,x); 13 else rs[node]=newtree(mid+1,r,x); 14 return node; 15 } 16 int merge(int l,int r,int u,int v){//对于范围同是[l,r]的树u,v,进行合并并返回新树的树根标号 17 if(!u||!v)return u+v;//若有一个树没了,以后的信息可以直接继承,且不会贡献逆序对 18 if(l==r){ 19 data[++tot]=data[u]+data[v]; 20 return tot; 21 } 22 int mid=(l+r)/2,node=++tot; 23 res1+=(ll)data[rs[u]]*data[ls[v]],res2+=(ll)data[ls[u]]*data[rs[v]];//在这里统计跨过mid的逆序对,剩下的分治统计 24 ls[node]=merge(l,mid,ls[u],ls[v]); 25 rs[node]=merge(mid+1,r,rs[u],rs[v]); 26 data[node]=data[ls[node]]+data[rs[node]];//合并节点信息 27 return node; 28 } 29 int dfs(){ 30 scanf("%d",&tmp); 31 if(tmp)return newtree(1,n,tmp);//建一颗只有tmp一个节点的线段树,并返回树根标号 32 int node=merge(1,n,dfs(),dfs()); 33 ans+=min(res1,res2);//选择决策中较优的那个 34 res1=res2=0; 35 return node; 36 } 37 int main(){ 38 scanf("%d",&n); 39 dfs();//递归读入加处理 40 printf("%lld",ans); 41 return 0; 42 }