• 【bzoj1492】[NOI2007]货币兑换Cash 【cdq分治+斜率优化dp】


    题目点这里
    题解:
    首先,我们会发现,在某一天全部买、全部卖一定比分散买卖更优,因为分散买的话我们可以把它们全部集中到最优的一天买卖,答案一定更优。
    设f[i]为第i天卖出全部股票最多能得到的钱。
    设第i天用f[i]的钱买x的B卷,rate[i]*x的A卷。
    a[i]rate[i]x+b[i]x=f[i]
    x(a[i]rate[i]+b[i])=f[i]
    x=f[i]/(a[i]rate[i]+b[i])
    所以第i天最多有rate[i]f[i]/(a[i]rate[i]+b[i])的A卷,f[i]/(a[i]rate[i]+b[i])的b卷。
    如果第i天再卖出第j天的所有股票,中间不进行任何操作,全部所得利润为
    a[i]rate[j]f[j]/(a[j]rate[j]+b[j])+b[i]f[j]/(a[j]rate[j]+b[j])
    x[i]=rate[i]f[i]/(a[i]rate[i]+b[i]),y[i]=f[i]/(a[i]rate[i]+b[i])
    原式可以化简为a[i]x[j]+b[i]y[j]
    如果k>j在第i天卖出第k天的所有股票比第i天卖出第j天的所有股票更优且y[j] < y[k],则有
    a[i]x[k]+b[i]y[k]>=a[i]x[j]+b[i]y[j]
    a[i](x[k]x[j])>=b[i](y[j]y[k])
    (x[k]x[j])/(y[j]y[k])<=b[i]/a[i]
    之后我们可以用cdq分治进行处理。
    首先,我们对所有天以b[i]/a[i]递增排序。然后进行分治。
    设当前分治到左端点为l,右端点为r的连续的r-l+1天,mid=(l+r)/2。
    如果l==r,可以直接先计算f[l]的值。
    否则,我们将之前排好序的那个数组一分为二,第mid天及以前的丢左边,剩下的丢右边。两边分别仍然是b[i]/a[i]递增排序的。
    接着,分治l~mid的区间。
    在下一层分治结束后,我们已经将l~mid按y值递增排序了(这个一会儿再提为什么),
    而且mid~r的b[i]/a[i]值也是递增排序的(这是分治l,mid之前的操作!)。
    于是我们就可以直接把l~mid的斜率丢进单调队列里面,然后更新mid+1~r的答案。
    (注意,mid+1~r的答案现在并没有确定,只是更新,一会儿分治(mid+1,r)的时候还会被更新到!
    随着一次次的分治,你会发现f[i]都被任何j<i的一天更新过答案!)
    接着我们分治mid+1~r。
    mid+1~r回溯过来之后,我们将l,mid和mid+1~r的y值进行一次归并排序,使得再回溯上一层的l~mid或者mid+1~r的y值是递增排序的。
    仔细推敲之后,你会发现这个递归分治过程是那么巧妙,那么精美!
    (由于博主语言表达能力有限,请各位看官仔细理解推敲。)
    代码:

    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #include<cassert>
    using namespace std;
    const int N=100005;
    const double eps=1e-10;
    int n,q[N];
    double f[N];
    struct data{
        double a,b,rate,k,x,y;
        int id;
        friend bool operator < (const data &a,const data &b){
            return a.k<b.k;
        } 
    }a[N],b[N];
    double slope(int j,int k){
        if(fabs(a[j].y-a[k].y)<eps){
            return a[k].x-a[j].x>0?-1e18:1e18;
        }
        return (a[k].x-a[j].x)/(a[j].y-a[k].y);
    }
    void solve(int l,int r){
        if(l==r){
            f[l]=max(f[l-1],f[l]);
            a[l].y=f[l]/(a[l].a*a[l].rate+a[l].b);
            a[l].x=a[l].rate*a[l].y;
            return;
        }
        int mid=(l+r)/2,j=l,k=mid+1;
        for(int i=l;i<=r;i++){
            if(a[i].id<=mid){
                b[j++]=a[i];
            }else{
                b[k++]=a[i];
            }
        }
        for(int i=l;i<=r;i++){
            a[i]=b[i];
        }
        solve(l,mid);
        j=1,k=0;
        for(int i=l;i<=mid;i++){
            while(j<k&&slope(q[k],i)<slope(q[k-1],q[k])){
                k--;
            }
            q[++k]=i;
        }
        for(int i=mid+1;i<=r;i++){
            while(j<k&&slope(q[j],q[j+1])<a[i].k){
                j++;
            }
            if(j<=k){
                f[a[i].id]=max(f[a[i].id],a[i].a*a[q[j]].x+a[i].b*a[q[j]].y);
            }
        }
        solve(mid+1,r);
        j=l,k=mid+1;
        for(int i=l;i<=r;i++){
            if(j<=mid&&(k>r||a[j].y<a[k].y)){
                b[i]=a[j++];
            }else{
                b[i]=a[k++];
            }
        }
        for(int i=l;i<=r;i++){
            a[i]=b[i];
        }
    }
    int main(){
        scanf("%d%lf",&n,&f[0]);
        for(int i=1;i<=n;i++){
            scanf("%lf%lf%lf",&a[i].a,&a[i].b,&a[i].rate);
            a[i].k=a[i].b/a[i].a;
            a[i].id=i;
        }
        sort(a+1,a+n+1);
        solve(1,n);
        printf("%.3lf
    ",f[n]);
        return 0;
    }
  • 相关阅读:
    Delphi系统变量:IsMultiThread对MM的影响
    Delphi7中 string, AnsiString, Utf8String,WideString的区别分析
    Delphi之TComponent类
    delphi -----(去掉窗口最大化,最小化、关闭),主窗口,和子窗口之间的设置
    Application.Title与Application.MainFormOnTaskbar之间的关系
    DELPHI用户登录窗口框架
    Element 1.2.7 发布,饿了么 Vue 2.0 组件库
    用Delphi实现网络视频编程
    甘超波:NLP是什么?
    OpenCV使用filter2D实现图像对比度提升
  • 原文地址:https://www.cnblogs.com/2016gdgzoi471/p/9476887.html
Copyright © 2020-2023  润新知